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Chapter 1

Introduction to Probability

LECTURE 1

1.1 Definitions of Probability
We can define probability in three different ways:

1.1.1 Definition (Probability)
1. Classical definition:

𝑃(event) = # ways the event can occur
# of all possible outcomes

this requires the outcomes to all be equally likely.
2. Relative frequency definition:

𝑃(event) = proportion of the time the event occurs in repeated experiments

this requires the same conditions for each observation.
3. Subjective probability definition:

𝑃(event) = how certain we are that the event will occur

However, all three of these definitions have serious limitations.
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Chapter 2

Chapter 2: Mathematical Probability
Models

LECTURE 2

2.1 Sample Spaces and Probability
We need a mathematical model to define probability.

2.1.1 Definition (Experiment, Trial, Outcome)
We define an experiment as a process that can be repeated with multiple possible results. We define
a trial as a single repetition of an experiment. We define an outcome as the results on one trial of an
experiment.

2.1.2 Definition (Set)
A set is a collection of well defined and distinct objects.

REMARK 2.1.1. A set is an unordered list with no repetition.

2.1.3 Definition (Sample Space)
A sample space 𝑆 is a set of distinct outcomes for an experiment or process, with the property that in a
single trial, one and only one of these outcomes occur.

Sample spaces can be discrete or non-discrete.

2.1.4 Definition (Discrete)
Let 𝑆 be a sample space. We say 𝑆 is discrete if it consists of a finite or countably infinite set of simple
events.

Example
Roll a fair 6-sided die repeatedly. Determine some possible sample spaces for this experiment.
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CHAPTER 2. CHAPTER 2: MATHEMATICAL PROBABILITY MODELS 6

Solution.
Sample space:

𝑆1 = {1, 2, 3, 4, 5, 6} ⋆ easiest to work with
𝑆2 = {odd, even}
𝑆3 = {prime, non-prime}
𝑆4 = {6,not 6} ⋆ outcomes don’t have to be equally likely in a sample space
𝑆5 = {a number}

⋆ need not have equally likely outcomes

2.1.5 Definition (Event, Simple Event, Compound Event)
Let 𝑆 be a discrete sample space. An event in a discrete sample space is a subset 𝐴 ⊆ 𝑆. If the event is
indivisible so it contains only one point, e.g. 𝐴1 = {𝑎1} we call it a simple event. An event 𝐴 made up
of two or more simple events such as 𝐴 = {𝑎1, 𝑎2} is called a compound event.

REMARK 2.1.2. The notation 𝐴 ⊆ 𝑆 means 𝑎 ∈ 𝐴 ⟹ 𝑎 ∈ 𝐵.
Example
Let 𝐴 = a 5 is rolled. Let 𝐵 = an odd # is rolled. Determine which of the events are simple events and
compound events.
Solution.
𝐴 = {5} ⊆ 𝑆, 𝐵 = {1, 3, 5} ⊆ 𝑆. Thus, 𝐴 is a simple event and 𝐵 is a compound event.
When the trial is conducted, the outcome determines which events occur.
If outcome is in the set, it occurs
5 rolled → 𝐴 and 𝐵 both occur
3 rolled → 𝐴 does not occur, 𝐵 occurs
2 rolled → neither events occur

2.1.6 Definition (Probability, Probability Distribution)
Let 𝑆 = {𝑎1, …} be a discrete sample space 𝑆. Assign numbers (probabilities) 𝑃(𝑎𝑖) for 𝑖 = 1, … to the
𝑎𝑖’s such that the following two conditions hold:
(1) 0 ≤ 𝑃(𝑎𝑖) ≤ 1
(2) ∑

all 𝑖
𝑃(𝑎𝑖) = 1

The set of probabilities {𝑃(𝑎𝑖), 𝑖 = 1, …} is called a probability distribution on 𝑆.

2.1.7 Definition (Probability of an Event)
The probability 𝑃(𝐴) of an event 𝐴 is the sum of the probabilities for all the simple events that make
up 𝐴 or

𝑃(𝐴) = ∑
𝑎∈𝐴

𝑃(𝑎)

If a sample space 𝑆 has equally likely outcomes then,

𝑃(simple event) = 1
|𝑆|
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𝑃(𝐴) = ∑
𝑎∈𝐴

𝑃(𝑎𝑖) = |𝐴|
|𝑆|



Chapter 3

Probability and Counting Techniques

LECTURE 3

3.1 Addition and Multiplication Rules
We need a systematic way to count outcomes without listing them.

3.1.1 Counting Rules
There are two basic counting rules:
1. The Addition Rule: Suppose we can do job 1 in 𝑝 ways and job 2 in 𝑞 ways. Then we can do either
job 1 OR job 2 (but not both), in 𝑝 + 𝑞 ways.
2. The Multiplication Rule: Suppose we can do job 1 in 𝑝 ways and job 2 in 𝑞 ways. Then we can do
both job 1 AND job 2 in 𝑝 × 𝑞 ways.

3.2 Counting Arrangements or Permutations
Sampling with replacement: it is possible to obtain the same result more than once, e.g. die rolls, coin flip,
slot machine, password.
Sampling without replacement: once a result occurs, it cannot happen again. e.g. drawing cards, balls from
an urn, eating candy of different colour.

3.2.1 Definition (Permutation)
A permutation is an ordered selection of 𝑘 objects chosen from 𝑛 objects.
If we select the objects above without replacement, we write

𝑛𝑃𝑘 = 𝑛(𝑛 − 1) ⋯ (𝑛 − 𝑘 + 1) = 𝑛(𝑘)

If we select the objects above with replacement, we write

𝑛𝑘

𝑛(0) = 1
𝑛(𝑛) = 𝑛!
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CHAPTER 3. PROBABILITY AND COUNTING TECHNIQUES 9

𝑘 > 𝑛 → 0 not possible
Example
IP addresses: an ordered sequence of four numbers between 0 and 255. e.g. 192.168.1.1, 129.97.95.107, etc.
Determine the total possible outcomes with and without replacement.
Solution.
Since order matters, we are immediately looking at a permutation.
With replacement: 2564

Without replacement: 256(4)

LECTURE 4

Always ask:
1. Can you get the same object twice?
- Yes → 𝑛𝑘

- No → Step 2.
2. Does the order matter?
- Yes → 𝑛(𝑘)

- No → today’s lesson (𝑛
𝑘)

Examples
4 numbers between 0 and 255

• total possible: 2564

• all odd numbers 1284 so 𝑃(all odd) = 1/16

• at least one odd number; work with the opposite: all even: 1284, so 𝑃(at least one odd) = 1 − 1284/2564

Example
5 people 𝐴, 𝐵, 𝐶, 𝐷 4 co-op jobs 1, 2, 3, 4
Find the probability that 𝐴 gets a job.
Solution.

1. order matters → (permutation of some sort)
2. 1 + without replacement → 𝑛(𝑘)

so total ways is 5(4) = 120
𝐴, _, _, _ or _, 𝐴, _, _ or _, _, 𝐴, _ or _, _, _, 𝐴
4(3) = 96
So probability they do is 96

120 = 0.8
Alternatively, # of ways for 𝐴 to not get a job is 4(4) or 4! (they are the same quantity). So probability they
do is 1 − 4!/120 = 0.8.
Intuitively this makes sense because each of the 5 is equally likely (1/5) to not get a job.
Find probability that 𝐵 and 𝐶 get adjacent jobs.
𝐵𝐶, _, _ or _, 𝐵𝐶, _ or _, _, 𝐵𝐶



CHAPTER 3. PROBABILITY AND COUNTING TECHNIQUES 10

𝐶𝐵, _, _⏟
3(2)

or _, 𝐶𝐵, _ or _, _, 𝐶𝐵

So total ways is 6 × 3(2) = 36, probability=36/120. Alternatively, treat 𝐵𝐶 as one unit with 2 ways it can look
(BC or CB).

3.3 Counting Subsets or Combinations

3.3.1 Definition (Combination)
A combination is an unordered selection of 𝑘 objects chosen from 𝑛 objects.
If we select the objects above without replacement, we write

𝑛𝐶𝑘 = 𝑛!
𝑘!(𝑛 − 𝑘)! = (𝑛

𝑘)

How many ways? If we did care, 𝑛(𝑘). Then deliberately forgot the order.
e.g. select 3 digits 0 − 9

{8, 2, 1}
if we care about the order, each set is counted 3! = 6 times.
So, there are 10(3)/3! = 120 possible sets of 3 digits.
This quantity is called

(𝑛
𝑘) = 𝑛(𝑘)

𝑘! = 𝑛!
𝑘!(𝑛 − 𝑘)! = 𝑛𝐶𝑘

“𝑛 choose 𝑘”, “binomial coefficient”, “(𝑛
𝑘) is the 𝑘𝑡ℎ element of the 𝑛𝑡ℎ row of Pascal’s 𝛥”

Example
Lotto 6/49, choose 6 winning # from 49. The order of the numbers does not matter.

(49
6 ) ways ≈ 13.9 million

LECTURE 5

3.3.2 Theorem (Properties of Combinations)
Let 𝑛, 𝑘 ∈ ℤ be non-negative.
1. 𝑛(𝑘) = 𝑛!

(𝑛−𝑘)! = 𝑛(𝑛 − 1)(𝑘−1) for 𝑘 ≥ 1
2. (𝑛

𝑘) = 𝑛(𝑘)
𝑘! = 𝑛!

𝑘!(𝑛−𝑘)!
3. (𝑛

𝑘) = ( 𝑛
𝑛−𝑘) for all 𝑘 = 1, … , 𝑛

4. If we define 0! = 1, then (𝑛
0) = (𝑛

𝑛) = 1
5. Pascal’s Identity: (𝑛

𝑘) = (𝑛−1
𝑘−1) + (𝑛−1

𝑘 )
6. Binomial Theorem: (1 + 𝑥)𝑛 = (𝑛

0) + ⋯ + (𝑛
𝑛)𝑥𝑛

Example
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Lotto 6/49 (49
6 ) possible sets of winning #’s. If your ticket contains all 6 winning #’s you win.

𝑃(win) = (6
6)(43

0 )
(49

6 )

𝑃 (match 5) = (6
5)(43

1 )
(49

6 )

Example
Suppose you select 5 cards from 52 (13 cards of each 4 suits). Find the probability of 3 of one rank, 2 of
another rank.
Total # of hands: (52

5 ). # with 3 of one, 2 of another:

rank of triple⏟⏟⏟⏟⏟
13

×(4
3) × rank of pair⏟⏟⏟⏟⏟

12
×(4

2)

3.4 Number of Arrangements When Symbols Are Repeated
Suppose we have 5 objects, 2 of which are alike:

D I A N A
If we arrange the objects in order, how many results can we get?
If we could tell them apart, then we have 5! ways, but every possible arrangement has a matching one with
A’s flipped.
So, 5!/2! = 60 ways (removing double counting)
In general, if we have 𝑛 objects:

𝑛1 of type 1
⋮

𝑛𝑘 of type 𝑘

⎫}
⎬}⎭

𝑛1 + ⋯ + 𝑛𝑘 = 𝑛

How many ways can the objects be arranged, where objects of the same type are identical?
𝑆𝑇 𝐴𝑇 𝐼𝑆𝑇 𝐼𝐶𝑆: 𝑛 = 10

𝑆 ∶ 3 𝑛1
𝑇 ∶ 3 𝑛2
𝐴 ∶ 1 𝑛3
𝐼 ∶ 2 𝑛4
𝐶 ∶ 1 𝑛5

ways to place:
𝑆 (10

3 )
𝑇 (7

3)
𝐴 (4

1)
𝐼 (3

2)
𝐶 (1

1)
So in total there are

(10
3 )(7

3)(4
1)(3

2)(1
1) = 10!

3!7!
7!

3!4!
4!

1!3!
3!

2!1!
1!

1!0!

= 10!
3!3!2!
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In general,
𝑛!

𝑛1! ⋯ 𝑛𝑘!

LECTURE 6

Example
7 Pokémon Go players, (2 M, 2 I, 3 V) are ranked 1 − 7. Find the probability that 1 and 7 are on different
teams.
Total # rankings: 7!

2!2!3! = 210.
𝑀, _, _, _, _, _⏟⏟⏟⏟⏟

2𝐼,3𝑉
, 𝑀 : 3!

2!3! = 10

𝐼, _, _, _, _, _⏟⏟⏟⏟⏟
2𝑀,3𝑉

, 𝐼: 3!
2!3! = 10

𝑉 , _, _, _, _, _⏟⏟⏟⏟⏟
2𝑀,2𝐼,1𝑉

, 𝑉 : 3!
2!2!1! = 50

210 − 50 = 160/210 < −total



Chapter 4

Probability Rules and Conditional
Probability

4.1 General Methods
𝐴 ∪ 𝐵

𝐴 ∩ 𝐵

𝐴 ∪ 𝐵 = 𝐴 ∩ 𝐵

13
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4.1.1 Theorem (De Morgan’s Laws)
(1) 𝐴 ∪ 𝐵 = ̄𝐴 ∩ 𝐵̄
(2) 𝐴 ∩ 𝐵 = ̄𝐴 ∪ 𝐵̄

4.2 Rules for Unions of Events

4.2.1 Rule 4a (Addition Law of Probability or the Sum Rule)
Let 𝐴 and 𝐵 be any events. Then

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵)

4.2.2 Rule 4b (Probability of the Union of Three Events)
Let 𝐴, 𝐵 and 𝐶 be any events. Then

𝑃(𝐴 ∪ 𝐵 ∪ 𝐶) = 𝑃 (𝐴) + 𝑃(𝐵) + 𝑃(𝐶) − 𝑃(𝐴𝐵) − 𝑃(𝐴𝐶) − 𝑃(𝐵𝐶) + 𝑃(𝐴𝐵𝐶)

Example
𝑃(𝐽) = 19/22

𝑃(𝐶) = 7/22

𝑃(neither) = 2/22

Find 𝑃(𝐽𝐶).
Solution.

(19 − 𝑥) + 𝑥 + (7 − 𝑥) + 2
22 = 1 ⟹ 𝑥 = 6

This relied on the fact that the regions were non-overlapping so we could add them up.

4.2.3 Definition (Mutually Exclusive)
Events 𝐴 and 𝐵 are mutually exclusive if

𝐴 ∩ 𝐵 = ∅ (the empty set)

4.2.4 Rule 5a (Probability of the Union of Two Mutually Exclusive Events)
Let 𝐴 and 𝐵 be mutually exclusive events. Then

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵)
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4.2.5 Rule 5c (Probability of the Union of n Mutually Exclusive Events)
Let 𝐴1, … , 𝐴𝑛 be mutually exclusive events. Then

𝑃(𝐴1 ∪ ⋯ ∪ 𝐴𝑛) =
𝑛

∑
𝑖=1

𝑃(𝐴𝑖)

4.2.6 Rule 6 (Probability of the Complement of an Event)
For any event 𝐴,

𝑃(𝐴) = 1 − 𝑃( ̄𝐴)

Proof. 𝐴 and ̄𝐴 are mutually exclusive. By rule 5a we have

𝐴 ∪ ̄𝐴 = 𝑃(𝐴) + 𝑃( ̄𝐴)

But since 𝑃(𝐴 ∪ ̄𝐴) = 𝑃(𝑆) = 1,

1 = 𝑃(𝐴) + 𝑃( ̄𝐴) ⟹ 𝑃(𝐴) = 1 − 𝑃( ̄𝐴)

LECTURE 7

Roll two fair 12-sided die. What is the probability at least one of them is greater than 7.

1 − 𝑃(neither) = 1 − 𝑃(𝐴 ∩ 𝐵)
= 1 − 𝑃( ̄𝐴 ∪ 𝐵̄)

= 1 − 7
12

7
12

In this example, we relied on the multiplication rule to find a probability on both events, but this requires the
events to not influence each other.

4.3 Intersections of Events and Independence

4.3.1 Definition (Independent, Dependent)
𝐴 and 𝐵 are independent if and only if

𝑃(𝐴𝐵) = 𝑃(𝐴)𝑃(𝐵)

If the events are not independent, we call the events dependent.

We can use this in two ways.
1. If we know both events are independent, we can calculate 𝑃(𝐴𝐵).
2. 2. Calculate/estimate all three probabilities and check whether independent. e.g. treatment vs recover,

smoking vs cancer, income vs politics
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Note for 𝐴, 𝐵, 𝐶 to be independent, we need

𝑃(𝐴𝐵) = 𝑃(𝐴)𝑃(𝐵)
𝑃(𝐵𝐶) = 𝑃(𝐵)𝑃(𝐶)
𝑃(𝐴𝐶) = 𝑃(𝐴)𝑃(𝐶)
𝑃(𝐴𝐵𝐶) = 𝑃(𝐴)𝑃(𝐵)𝑃(𝐶)

Example
Roll 2 fair 6-sided dice. Let 𝐴 = the first die is 3. Let 𝐵 = the total is 7. Are 𝐴 and 𝐵 independent?

𝑃(𝐴) = 1
6

𝑃(𝐵) = 6
36

𝑃(𝐴𝐵) = 1
36

𝑃(𝐴𝐵) = 1
36 = 1

6
1
36 = 𝑃(𝐴)𝑃(𝐵)

Now, let 𝐶 = the total is 8. Are 𝐴 and 𝐶 independent?

𝑃(𝐶) = 5
36

𝑃(𝐴𝐶) = 1
36

𝑃(𝐴𝐶) = 1
36 ≠ 1

6
5
36 = 𝑃(𝐴)𝑃(𝐶)

Why? With 7 there is always a possible second roll, but with 8 it’s not always possible (e.g. if the first die was
a 1).
Independence vs. Mutual Exclusive

ME ID Both
math 𝐴𝐵 = ∅, 𝑃(𝐴𝐵) =

0
𝑃(𝐴𝐵) =
𝑃(𝐴)𝑃(𝐵)

𝑃(𝐴)𝑃(𝐵) = 0

logic both can’t happen one doesn’t affect
the other

at least one is
impossible

If events are dependent, we might want to quantify the effect of one on the other.

4.4 Conditional Probability

4.4.1 Definition (Conditional Probability)
The conditional probability of 𝐴, given 𝐵 is

𝑃(𝐴|𝐵) = 𝑃(𝐴𝐵)
𝑃(𝐵)

provided 𝑃(𝐵) > 0.
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Why? The classical definition of probability:
# ways 𝐴 can occur
# ways 𝐵 can occur

Since we need to restrict 𝑆 to just be 𝐵,

𝑃(𝐴|𝐶) = 𝑃(𝐴𝐶)
𝑃(𝐶) =

1
36
5

36
= 1

5 > 𝑃(𝐴)

or 𝐶 ∶ {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}

𝑃(𝐶|𝐴) = 𝑃(𝐶𝐴)
𝑃(𝐴) =

1
36
1
6

= 1
6 > 𝑃(𝐶)

or 𝐴 ∶ {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)}
Dependence is a two way relationship. Both influence the other in the same direction.

LECTURE 8*

4.5 Product Rules, Law of Total Probability and Bayes’ Theorem

4.5.1 Rule 7 (Product Rules)
Let 𝐴, 𝐵, 𝐶, 𝐷, … be events in a sample space. Assume that 𝑃(𝐴) > 0, 𝑃(𝐴𝐵) > 0, and 𝑃(𝐴𝐵𝐶) > 0.
Then

𝑃(𝐴𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐴𝐵𝐶) = 𝑃(𝐶|𝐴𝐵)𝑃(𝐴𝐵)

𝑃(𝐴𝐵𝐶𝐷) = 𝑃(𝐷|𝐴𝐵𝐶)𝑃(𝐴𝐵𝐶)
and so on.

4.5.2 Rule 8 (Law of Total Probability)
Let 𝐴1, … , 𝐴𝑘 be a partition of the sample space 𝑆 into disjoint (mutually exclusive events), that is

𝐴1 ∪ ⋯ 𝐴𝑘 = 𝑆

and
𝐴𝑖 ∩ 𝐴𝑗 = ∅ 𝑖 ≠ 𝑗

Let 𝐵 be an arbitrary event in 𝑆. Then

𝑃(𝐵) =
𝑘

∑
𝑖=1

𝑃(𝐵|𝐴𝑖)𝑃 (𝐴𝑖)

4.5.3 Theorem (Bayes’ Theorem)
Suppose 𝐴 and 𝐵 are events defined on a sample space 𝑆. Suppose also that 𝑃(𝐵) > 0. Then

𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵|𝐴)𝑃(𝐴) + 𝑃(𝐵| ̄𝐴)𝑃( ̄𝐴)



CHAPTER 4. PROBABILITY RULES AND CONDITIONAL PROBABILITY 18

LECTURE 9

We might be interested in reversing the direction of a conditional probability.
• given a positive test, what is the probability that you have a disease?
• given an error in code, who wrote it?

Example
1. If you test for a disease, what is the probability that you have it?
𝑃(𝐷) = 0.02
𝑃(𝑇 |𝐷̄) = 0.05 false positive
𝑃(𝐷̄|𝑇 ) = 0.01 false negative
We found 𝑃(𝑇 ) = 0.0688, we want

𝑃(𝐷|𝑇 ) = 𝑃(𝑇 |𝐷)𝑃(𝐷)
𝑃(𝑇 |𝐷)𝑃(𝐷) + 𝑃(𝑇 |𝐷̄)𝑃 (𝐷̄)

= 0.99 × 0.02
0.99 × 0.02 + 0.05 × 0.98

= 0.288

2. Given a line of code that has an error, what is the probability that 𝐴 wrote it?
𝑃(𝐴) = 0.5
𝑃(𝐵) = 𝑃(𝐶) = 0.25
𝑃(𝐸|𝐴) = 0.01
𝑃(𝐸|𝐵) = 0.02
𝑃(𝐸|𝐶) = 0.05
We want

𝑃(𝐴|𝐸) = 𝑃(𝐸|𝐴)𝑃(𝐴)
𝑃(𝐸|𝐴)𝑃(𝐴) + 𝑃(𝐸|𝐵)𝑃(𝐵) + 𝑃(𝐸|𝐶)𝑃(𝐶)

= 0.5 × 0.01
0.0225

= 0.222 < 𝑃(𝐴)

Similarly,
𝑃(𝐵|𝐸) = 0.22 < 𝑃(𝐵)
𝑃(𝐶|𝐸) = 0.556 > 𝑃(𝐶)

Note the three conditional probabilities sum to 1 which they must since exactly one of 𝐴, 𝐵, or 𝐶 wrote the
line.
3. Probability of a LoL player also playing Warcraft?

𝑃(𝑊|𝐿) = 𝑃(𝐿|𝑊)𝑃(𝑊)
0.0387 = exercise
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4.6 Useful Series and Sums

4.6.1 Theorem (Geometric Series)
The geometric series

∞
∑
𝑛=0

𝑎𝑟𝑛 converges if |𝑟| < 1 and diverges otherwise. If |𝑟| < 1, then

∞
∑
𝑛=0

𝑎𝑟𝑛 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + ⋯ = 𝑎
1 − 𝑟

4.6.2 Theorem (Binomial Theorem)
Let 𝑛 be a positive integer, 𝑥 ∈ ℝ.

(1 + 𝑥)𝑛 =
𝑛

∑
𝑘=0

(𝑛
𝑘)𝑥𝑘

4.6.3 Theorem (Exponential Series)
Let 𝑥 ∈ ℝ.

𝑒𝑥 =
∞

∑
𝑛=0

𝑥𝑛

𝑛!

𝑒𝑥 = lim
𝑛→∞

(1 + 𝑥
𝑛)

𝑛

4.6.4 Theorem (Hypergeometric Identity)

(𝑎 + 𝑏
𝑛 ) =

𝑛
∑
𝑥=0

(𝑎
𝑥)( 𝑏

𝑛 − 𝑥)

LECTURE 10

MLIW 3: Naïve Bayes’ Classifier
In ML classification, we use evidence to decide what category something belongs to. That is,

𝑃(category ∣ evidence) = 𝑃(cat)𝑃 (evidence ∣ cat)
∑
cat 𝑖

𝑃(cat 𝑖)𝑃 (evidence ∣ cat 𝑖)

The Naïve Bayes’ Classifier assumes that if there are multiple pieces of evidence, they are conditionally inde-
pendent (conditional on the category).
A very simple ML example of this is spam detection. Consider the machine learning problem of classifying
incoming messages as spam. We define:

• 𝐴1 = message fails rDNS (reverse DNS lookup) check (i.e. the “from” domain doesn’t match)
• 𝐴2 = message is sent to over 100 people
• 𝐴3 = message contains a link with the URL not matching the alt

We will assume that the 𝐴𝑖’s are independent events, given that a message is a spam, and that they are also
independent events, given that a message is spam.
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We estimate
• 𝑃(Spam) = 0.25
• 𝑃(𝐴1 ∣ Spam) = 0.3
• 𝑃(𝐴2 ∣ Spam) = 0.2
• 𝑃(𝐴3 ∣ Spam) = 0.1
• 𝑃(𝐴1 ∣ Spam) = 0.005
• 𝑃(𝐴2 ∣ Spam) = 0.04
• 𝑃(𝐴3 ∣ Spam) = 0.05

We use Bayes’ Theorem:
𝑃 (Spam ∣ 𝐴1𝐴2𝐴3) =

= 𝑃(𝐴1𝐴2𝐴3 ∣ Spam)𝑃 (Spam)
𝑃 (𝐴1𝐴2𝐴3 ∣ Spam)𝑃 (Spam) + 𝑃(𝐴1𝐴2𝐴3 ∣ Spam)𝑃 (Spam)

= 𝑃(𝐴1 ∣ Spam)𝑃 (𝐴2 ∣ Spam)𝑃 (𝐴3 ∣ Spam)𝑃 (Spam)
𝑃 (𝐴1 ∣ Spam)𝑃 (𝐴2 ∣ Spam)𝑃 (𝐴3 ∣ Spam)𝑃 (Spam) + 𝑃(𝐴1 ∣ Spam)𝑃 (𝐴2 ∣ Spam)𝑃 (𝐴3 ∣ Spam)𝑃 (Spam)

= (0.3)(0.2)(0.1)(0.25)
(0.3)(0.2)(0.1)(0.25) + (0.005)(0.04)(0.05)(0.75)

≈ 0.9950

Remember that 𝐴1, 𝐴2, and 𝐴3 are NOT independent! They are only conditionally independent, given the
type of email.



Chapter 5

Random Variables

5.1 Random Variables and Probability Functions

5.1.1 Definition (Random Variable)
A random variable is a function that assigns a real number to each point in a sample space 𝑆.

We typically use 𝑋, 𝑌 , 𝑍 as random variables and 𝑥, 𝑦, 𝑧 as the possible values the random variable can take
on. There are two types of random variables based on the range.

5.1.2 Definition (Discrete Random Variables)
Discrete random variables take integer values or, more generally, values in a countable set.

5.1.3 Definition (Continuous Random Variables)
Continuous random variables take values in some interval of real numbers like (0, 1) or (1, ∞) or
(−∞, ∞).

We can define multiple random variables on the same sample space 𝑆. For example, roll a fair 6-sided die 3
times.

𝑆 = {(𝑥, 𝑦, 𝑧)|1 ≤ 𝑥, 𝑦, 𝑧 ≤ 6}
• Let 𝑋 = sum on the three die. 𝑟𝑎𝑛𝑔𝑒(𝑋) = {3, … , 18}.
• Let 𝑌 = product on the three die. 𝑟𝑎𝑛𝑔𝑒(𝑌 ) = {1, … , 216}.
• Let 𝑍 = number on the first die. 𝑟𝑎𝑛𝑔𝑒(𝑍) = {1, … , 6}
• Let 𝑋̄ = average. 𝑟𝑎𝑛𝑔𝑒(𝑋̄) = {1, 4/3, … , 6}
• Let 𝑊 = # of dice that are 1. 𝑟𝑎𝑛𝑔𝑒(𝑊) = {0, 1, 2, 3}

Examples of continuous random variables include:
• 𝑇 = time until an event
• 𝑃 = positive in space of a particle
• 𝐻 = height of a random person.

21
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For Chapter 5, we will focus on discrete random variables.

5.1.4 Definition (Probability Function, Probability Distribution)
Let 𝑋 be a discrete random variable with 𝑟𝑎𝑛𝑔𝑒(𝑋) = 𝐴. The probability function of 𝑋 is the function

𝑓(𝑥) = 𝑃(𝑋 = 𝑥)

for all 𝑥 ∈ 𝐴.
The set of pairs {(𝑥, 𝑓(𝑥)) ∶ 𝑥 ∈ 𝐴} is called the probability distribution of 𝑋.

5.1.5 Theorem (Properties of Probability Functions)
All probability functions must have the two properties:
1. 0 ≤ 𝑓(𝑥) ≤ 1 for all 𝑥 ∈ 𝐴
2. ∑

all 𝑥∈𝐴
𝑓(𝑥) = 1

Example
Let 𝑋 = # of dice that are 1.

𝑥 0 1 2 3
𝑓(𝑥) 53/63 3 × 52/62 3 × 5/63 13/63

LECTURE 11

5.1.6 Definition (Cumulative Distribution Function)
The cumulative distribution function of 𝑋 is the function usually denoted by 𝐹(𝑥)

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥)

for all 𝑥 ∈ ℝ.

Example
𝑥 0 1 2 3

𝑓(𝑥) 125/216 75/216 15/216 1/216
𝐹(𝑥) 125/216 200/216 215/216 1

5.1.7 Theorem (Properties of Cumulative Distribution Functions)
All cumulative distribution functions must have the following properties:
1. 𝐹(𝑥) is a non-decreasing function of 𝑥 for all 𝑥 ∈ ℝ
2. 0 ≤ 𝐹(𝑥) ≤ 1 for all 𝑥 ∈ ℝ
3. lim

𝑥→−∞
𝐹(𝑥) = 0

4. lim
𝑥→∞

𝐹(𝑥) = 1
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5.1.8 Theorem
If 𝑋 takes on integer values for 𝑥 such that 𝑥 ∈ 𝐴 and (𝑥 − 1) ∈ 𝐴,

𝑓(𝑥) = 𝐹(𝑥) − 𝐹(𝑥 − 1)

Proof. 𝐹(𝑥) − 𝐹(𝑥 − 1) = 𝑃(𝑋 ≤ 𝑥) − 𝑃(𝑋 ≤ 𝑥 − 1) = 𝑃(𝑋 = 𝑥) = 𝑓(𝑥)

5.2 Discrete Uniform Distribution

5.2.1 Definition (Discrete Uniform Distribution)
Suppose 𝑋 takes values 𝑎, 𝑎+1, … , 𝑏 with all values being equally likely. Then 𝑋 has a Discrete Uniform
distribution on the set {𝑎, 𝑎 + 1, … , 𝑏} and we write

𝑋 ∼ 𝒰[𝑎, 𝑏]

Find the probability function, 𝑓(𝑥)
we note there are (𝑏 − 𝑎 + 1) values 𝑋 can take so the probability at each of these values must be 1

𝑏−𝑎+1 so

that
𝑏

∑
𝑥=𝑎

𝑓(𝑥) = 1. Hence

𝑓(𝑥) = {
1

𝑏−𝑎+1 , 𝑥 = 𝑎, … , 𝑏
0, otherwise

5.3 Hypergeometric Distribution

5.3.1 Definition (Hypergeometric Distribution)
Suppose we have a collection of 𝑁 objects which can be classified into two different types, a success
(S) and a failure (F). Suppose there are 𝑟 success and 𝑁 − 𝑟 failures. Pick 𝑛 objects at random without
replacement. Let 𝑋 be the number of successes obtained. Then 𝑋 has a Hypergeometric distribution
and we write

𝑋 ∼ Hyp(𝑁, 𝑟, 𝑛)

Find the probability function, 𝑓(𝑥)
There are (𝑁

𝑛) points in the sample space 𝑆 if we don’t consider the order of selection. There are (𝑟
𝑥) ways to

choose the successes from the 𝑟 available AND (𝑁−𝑟
𝑛−𝑥) ways to choose the remaining (𝑛 − 𝑥) objects from the

(𝑁 − 𝑟) failures. Hence
𝑓(𝑥) = (𝑟

𝑥)(𝑁−𝑟
𝑛−𝑥)

(𝑁
𝑛)

for 𝑥 = 0, … ,min(𝑟, 𝑛).
Example
Suppose we have 10 cards, with 7 that are money cards and 3 non-money cards. Let 𝑋 = # of money cards
in your hand. Then

𝑋 ∼ 𝐻𝑦𝑝(10, 7, 5)
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𝑓(𝑥) = (7
𝑥)( 3

5−𝑥)
(10

5 )
for 𝑥 = 2, 3, 4, 5 (any less and you run out of non-money cards).

5.4 Binomial Distribution

5.4.1 Definition (Bernoulli Trials)
(1) Suppose an experiment has two distinct outcomes, call them a success (S) and a failure (F).
(2) Let their probabilities 𝑝 for S and (1 − 𝑝) for F.
(3) Repeat the experiment 𝑛 independent times.
Then, the 𝑛 individual experiments in the process are called Bernoulli trials.

5.4.2 Definition (Binomial Distribution)
Suppose an experiment follows the Bernoulli trials. Then 𝑋 has a Binomial distribution and we write

𝑋 ∼ Binomial(𝑛, 𝑝)

Find the probability function, 𝑓(𝑥)
There are (𝑛

𝑥) different arrangements of 𝑥 S’s and (𝑛 − 𝑥) F’s over 𝑛 trials. Since the trials are independent,
the probability of a success is 𝑝 multiplied 𝑥 times, and a failure is (1 − 𝑝) multiplied (𝑛 − 𝑥) times. Thus we
have

𝑓(𝑥) = (𝑛
𝑥)𝑝𝑥(1 − 𝑝)𝑛−𝑥

for 𝑥 = 0, … , 𝑛.

LECTURE 12

Example - Error Correcting Code
Suppose you send a 4-bit message over a noisy connection. Each bit is independently flipped with a probability
𝑝 = 0.1. Find 𝑃(message is received correctly).
Solution.
Let 𝑋 = # of bits that get flipped.

𝑋 ∼ Binomial(4, 0.1)

𝑃 (𝑋 = 0) = (4
0)0.10(1 − 0.1)4−0 = 0.6561

Example cont.
Now suppose we add 3 parity bits that allow the receiver to detect and correct up to 1 error in the message.
Find 𝑃(message is received correctly).
Solution.
Let 𝑌 = # of bits flipped.

𝑌 ∼ 𝐵𝑖𝑛(7, 0.1)

𝑃 (𝑌 = 0) + 𝑃(𝑌 = 1) = (7
0)0.100.97 + (7

1)0.110.96 ≈ 0.8503
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Example (ION)
Suppose there are 100 people, 10 people with no bus pass, and 20 people are selected at random without
replacement. Find the probability that there are two people with no bus pass.
Solution.
Let 𝑋 = # people found with no bus pass.

𝑋 ∼ Hyp(100, 10, 20)

𝑃 (𝑋 = 2) = (10
2 )(90

18)
(100

20 ) ≈ 0.3182

Hypergeometric Approximation with Binomial Distribution
If we did the selection with repetition, the Hypergeometric distribution would become a Binomial distribu-
tion.
If 𝑁 is extremely large compared to 𝑛, then it doesn’t make much difference if the sampling is with our
without.
In that case, a Hyp(𝑁, 𝑟, 𝑛) case can be approximated by Binomial(𝑛, 𝑟/𝑁)
Example
Suppose we have 100 cards, with 70 money cards and 30 non-money cards. Select 4 cards without replace-
ment. Find a suitable approximation for this Hypergeometric distribution assuming 𝑍 = # of money cards
selected.
Solution.
Let 𝑍 = # of money cards selected.

𝑍 ∼ Hyp(100, 70, 5)

𝑃 (𝑍 = 4) = (70
4 )(30

1 )
(100

5 ) ≈ 0.3654

With a Binomial approximation:
𝑍 ∼ Binomial(5, 70/100 = 0.7)

𝑃(𝑍 = 4) = (5
4)0.74(1 − 0.7)5−4 = 0.36015

which is clearly a very good approximation.

LECTURE 13

5.5 Negative Binomial Distribution

5.5.1 Definition (Negative Binomial Distribution)
Suppose an experiment follows the Bernoulli trials, and continue doing this experiment until 𝑘 success
are obtained. Let 𝑋 be the number of failures obtained before the 𝑘th success. Then 𝑋 has a Negative
Binomial distribution and we write

𝑋 ∼ NB(𝑘, 𝑝)

Find the probability function, 𝑓(𝑥)
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There will be a total of (𝑥 + 𝑘) trials (𝑥 F’s 𝑘 S’s) and the last trial will be a success. In the first (𝑥 + 𝑘 − 1)
trials we must have 𝑥 failures and (𝑘 − 1) successes, where order does not matter (the last trial we know it
must be a success, that’s why we are only looking at before the 𝑘th success!) Hence, we have a combination
which is (𝑥+𝑘−1

𝑘−1 ). Each order will have a probability 𝑝𝑘(1 − 𝑝)𝑥. Hence

𝑓(𝑥) = (𝑥 + 𝑘 − 1
𝑘 − 1 )𝑝𝑘(1 − 𝑝)𝑥

for 𝑥 ∈ [0, ∞).
In a picture:

𝑥+(𝑘−1) Trials
⏞⏞⏞⏞⏞_ _ _ … _ ∣⏟⏟⏟⏟⏟
𝑥 F’s, (𝑘−1) S’s

S⏟
𝑘th S

Example
How many tails until we get the 10th head on a fair coin?
Solution.
Let 𝑋 = # of tails before the 10th head.

𝑋 ∼ NB (10, 1/2)

Example
If courses were independent with probability 𝑝 of passing and you need 40 courses, then the number of failed
courses would be NB(40, 𝑝).
Example
Suppose a start-up is looking for 5 investors. They ask investors repeatedly where each independently has
a 20% chance of saying yes. Let 𝑋 = total # of investors that they ask and note that 𝑋 does not follow a
negative binomial distribution. Find 𝑓(𝑥) and 𝑓(10).
Solution.
Let 𝑌 = # who say no before 5 say yes. We know 𝑋 = 𝑌 + 5.

𝑌 ∼ NB(5, 0.2)

𝑓(𝑥) = 𝑃(𝑋 = 𝑥)
= 𝑃(𝑌 + 5 = 𝑥)
= 𝑃(𝑌 = 𝑥 − 5)

= ((𝑥 − 5) + 5 − 1
5 − 1 )(0.2)5(0.8)𝑥−5

= (𝑥 − 1
4 )(0.2)5(0.8)𝑥−5

for 𝑥 ∈ [5, ∞).
𝑓(10) = (9

4)(0.2)5(0.8)5 ≈ 0.0132

Note that we have (9
4) and not (10

5 ) because the 10th investor must have said yes.

LECTURE 14

Example
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Suppose you send a bit string over a noisy connection with each bit independently having a probability 0.01
of being flipped. What is the probability that
(a) it takes 50 bits to get 5 errors?
(b) a 50 bit message has 5 errors?

Solution.
(b) Let 𝑌 = # of errors in 50 bits.

𝑌 ∼ Binomial(50, 0.01)

𝑃 (𝑌 = 5) = (50
5 )(0.01)5(0.99)45

(a) Let 𝑋 = # of correct bits until 5 errors.

𝑋 ∼ NB(5, 0.01)

𝑃 (𝑋 = 45) = (49
4 )(0.01)5(0.99)45

5.6 Geometric Distribution

5.6.1 Definition (Geometric Distribution)
Consider the exact same process as in the Negative Binomial distribution case, but with 𝑘 = 1. That is,
we repeat the Bernoulli trials until the first success. Let 𝑋 be the number of failures obtained before
the first success. Then 𝑋 has a Geometric distribution and we write

𝑋 ∼ Geometric(𝑝)

Find the probability function, 𝑓(𝑥)
Substitute 𝑘 = 1 into the Negative Binomial distribution to obtain

𝑓(𝑥) = 𝑝(1 − 𝑝)𝑥

for 𝑥 ∈ [0, ∞).
Prove the following:
∞
∑
𝑥=0

𝑓(𝑥) = 1

Proof.
∞

∑
𝑥=0

(1 − 𝑝)𝑥𝑝 = 𝑝 + 𝑝(1 − 𝑝) + ⋯⏟⏟⏟⏟⏟⏟⏟
(geo. series: 𝑎 = 𝑝, 𝑟 = 1 − 𝑝)

= 𝑝
1 − (1 − 𝑝)

= 1



CHAPTER 5. RANDOM VARIABLES 28

Find the cumulative distribution function, 𝐹(𝑥)

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥)
= 1 − 𝑃(𝑋 > 𝑥)
= 1 − [𝑓(𝑥 + 1) + 𝑓(𝑥 + 2) + ⋯]
= 1 − [𝑝(1 − 𝑝)𝑥+1 + 𝑝(1 − 𝑝)𝑥+2 + ⋯]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(geo. series: 𝑎 = 𝑝(1 − 𝑝)𝑥+1, 𝑟 = 1 − 𝑝)

= 1 − 𝑝(1 − 𝑝)𝑥+1

1 − (1 − 𝑝)
= 1 − (1 − 𝑝)𝑥+1

for 𝑥 ∈ [0, ∞).
If 𝑥 ∈ ℝ, then

𝐹(𝑥) = { 1 − (1 − 𝑝)⌊𝑥⌋+1 𝑥 ≥ 0
0 𝑥 < 0

LECTURE 15

Example
Naomi invites 12 people to her party. If each independently comes with probability 𝑝. Let 𝑋 = # of
guests.

𝑋 ∼ Binomial(12, 𝑝)

Example
20 toys in a machine. Each time you grab one with a claw. Let 𝑋 = # of tries to get one toy you want.
None.
Example
Trying to catch a Pokémon, each time has a probability 𝑝 of succeeding. Let 𝑋 = # of failed attempts.

𝑋 ∼ Geometric(𝑝)

Example
You have 5 classes randomly scheduled in a row.
Let 𝑋 = # of classes before your favourite.
The range of 𝑋 is: 0, 1, 2, 3, 4, and the probability is 1/5 for each of the range. We have the following:

𝑋 ∼ 𝒰[1, 4]

5.7 Poisson Distribution from Binomial
Suppose we have a 𝑋 ∼ Binomial(𝑛, 𝑝) where 𝑛 is very large and 𝑝 is very small. Then, as 𝑛 → ∞ and 𝑝 → 0
such that 𝑛𝑝 remains constant, the probability function of X approaches a limit.
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Let 𝑛𝑝 = 𝜇, so 𝑝 = 𝜇
𝑛 . Then

lim
𝑛→∞

𝑓 (𝑥) = lim
𝑛→∞

(𝑛
𝑥)𝑝𝑥 (1 − 𝑝)𝑛−𝑥

= lim
𝑛→∞

𝑛 (𝑛 − 1) ⋯ (𝑛 − 𝑥 + 1)
𝑥!

𝜇𝑥

𝑛𝑥 (1 − 𝜇
𝑛)

𝑛
(1 − 𝜇

𝑛)
−𝑥

= 𝜇𝑥

𝑥! lim
𝑛→∞

𝑛
𝑛

𝑛 − 1
𝑛 ⋯ 𝑛 − 𝑥 + 1

𝑛 (1 − 𝜇
𝑛)

𝑛
(1 − 𝜇

𝑛)
−𝑥

= 𝜇𝑥

𝑥! lim
𝑛→∞

(1 − 𝜇
𝑛)

𝑛

= 𝑒−𝜇𝜇𝑥

𝑥!

We write: 𝑋 ∼ Poisson (𝜇), range: 0, 1, …
We can use the Poisson random variable as an approximation to the Binomial when 𝑛 is large, and 𝑝 is small.
The only thing we need to do is 𝜇 = 𝑛𝑝.
Example
Tim Hortons roll up the rim says 1 in 6 cups win a prize. Suppose you have 80 cups. Find the probability that
you get 10 or fewer winners.
Let 𝑋 = # of winning cups. 𝑋 ∼ Binomial(80, 1/6) We want

𝐹(10) = 𝑃(𝑋 ≤ 10)

=
10

∑
𝑥=0

𝑓(𝑥)

= (80
0 ) (1

6)
0

(5
6)

80
+ ⋯ + (80

10) (1
6)

10
(5

6)
70

= 0.2002 (tedious)

Try a Poisson approximation. 𝑌 ∼ Poisson(𝜇 = 𝑛𝑝 = 80
6 ≈ 13.33). Then,

𝑃(𝑌 ≤ 10) = 𝑒−13.33 [1 + 13.33
1! + ⋯ + 13.3310

10! ] = 0.224
Not a good approximation since 𝑝 was too large.

5.8 Poisson Distribution from Poisson Process

5.8.1 Definition (Poisson Process)
Poisson Process: Suppose events occur randomly in time or space according to three conditions:
(1) Independence: the number of events in one period cannot affect another non-overlapping period
(2) Individuality: events occur one at a time (cannot have two at the exact same time)
(3) Homogeneity or Uniformity: events occur at a constant rate

LECTURE 16

Example
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Request coming in from a web server at a rate of 100 requests per minute. 𝜆 = 100, 𝑡 = 1
60 The # of requests

per second would be
Poisson(𝜇 = 100

60 = 5
3)

5.9 Combining Other Models with the Poisson Process
Problems may involve many different random variables!
Example (Continued)
We say that a second is quiet if it has no requests.
(a) Find probability that a second is quiet
(b) In a minute (60 non-overlapping seconds), find the probability of 10 quiet seconds
(c) Find the probability of having to wait 30 non-overlapping seconds to get 2 quiet seconds
(d) Given (c), find the probability of 1 quiet second in the first 15 seconds

(a) Let 𝑋 = # requests in a second. 𝑋 ∼ Poisson(5/3).

We want 𝑃 (𝑋 = 0) = 𝑒− 5
3 ( 5

3 )0

0! = 0.189
(b) Let 𝑌 = # quiet seconds out of 60. 𝑌 ∼ Binomial(60, 0.189).
We want 𝑃 (𝑌 = 10) = (60

10)(0.189)10(0.811)50 = 0.124
(c) Let 𝑍 = # non-quiet seconds before getting 2 quiet seconds. 𝑍 ∼ NB(2, 0.189).
We want 𝑃 (𝑍 = 28) = (29

1 )(0.189)2(0.811)28 = 0.003
(d) 𝐷𝑥 = # of quiet seconds out of 15. 𝐷𝑥 ∼ Binomial(15, 0.189).

𝑃(𝐷𝑥 = 1) = (15
1 )(0.189)1(0.811)14

We get,
𝑃 (1 quiet second in the first 15 seconds ∣ wait 30 to get 2 quiet) =

= 𝑃(1 quiet second in the first 15 seconds AND wait 30 to get 2 quiet)
𝑃 (wait 30 to get 2 quiet) (5.1)

= 𝑃(1 quiet second in the first 15 seconds AND wait an additional 15 to get 1 additional quiet)
𝑃 (𝐶) (5.2)

= 𝑃(1 quiet second in the first 15 seconds)𝑃 (wait an additional 15 to get 1 additional quiet)
𝑃 (𝐶) (5.3)

= (15
1 )(0.189)1(0.811)14 × (0.811)14(0.189)

(29
28)(0.189)2(0.811)28 (5.4)

= (15
1 )

(29
28)

(5.5)

= 15
29 (5.6)

In (3) we used the independence of non-overlapping time intervals and constant probability of events.
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Discrete Uniform Hypergeometric Binomial Negative Binomial Geometric Poisson

function 𝒰[𝑎, 𝑏] Hyp(𝑁, 𝑟, 𝑛) Binomial(𝑛, 𝑝) NB(𝑘, 𝑝) Geometric(𝑝) Poisson(𝜇)

range 𝑎, 𝑎 + 1, … , 𝑏 bad 0, 1, … , 𝑛 0, 1, … 0, 1, … 0, 1, …

parameters 𝜇 = 𝑛𝑝, 𝜇 = 𝜆𝑡

𝑓(𝑥) 1
𝑏−𝑎+1

(𝑟
𝑥)(𝑁−𝑟

𝑛−𝑥)
(𝑁

𝑛) (𝑛
𝑥)𝑝𝑥(1 − 𝑝)𝑛−𝑥 (𝑥+𝑘−1

𝑘−1 )𝑝𝑘(1 − 𝑝)𝑥 𝑝(1 − 𝑝)𝑥 𝑒−𝜇𝜇𝑥

𝑥!

𝐹(𝑥) 𝑥−𝑎+1
𝑏−𝑎+1 1 − (1 − 𝑝)𝑥+1 𝑒𝜇 [1 + 𝜇1

1! + ⋯ 𝜇𝑥

𝑥! ]

how to tell “equally likely”
know min. and max.

know total # objects
know # S’s
know # trials
count # S’s
without replacement
selecting a subset

Bernoulli trials
know # trials
count # S’s

Bernoulli trials
“until”
“it takes… to get”
“before”
know how many S’s we want

“until we get”
“before the first”

Bin. with large amount of trials and small probability
rate specified (#events/time)
no pre-specified max.
events occurring at any time (randomly)
Poisson process, known time, count events
doesn’t make sense to ask how often an event did not occur
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Expected Value and Variance

7.1 Summarizing Data on Random Variables
Let 𝑋 = # of kids in a family.

Value Frequency
1 3
2 10
3 1
4 1

7.1.1 Definition (Median)
The median of a sample is a value such that half the results are below it and half above it, when the
results are arranged in numerical order.

7.1.2 Definition (Mode)
The mode of the sample is the value which occurs most often. There is no guarantee there will be only
a single mode.

Mean: average → 1×3+2×10+3×1+4×1
15 = 2

Median: 2
Mode: 2

LECTURE 17*

7.2 Expectation of a Random Variable
Imagine we know the theoretical probability of each # of kids in a family.

𝑥 1 2 3 4 5
𝑓(𝑥) 0.43 0.4 0.12 0.04 0.01

Now we replace the observed proportion in the sample mean with 𝑓(𝑥).

∑
all 𝑥

𝑥𝑓(𝑥) = (1)(0.43) + (2)(0.4) + (3)(0.12) + (4)(0.04) + (5)(0.01) = 1.8

32
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which is the theoretical mean.
Why do we have sample mean > theoretical mean?

• urban vs rural population
• income level
• sampled max family size but theoretical includes growing families
• selection bias (if you randomly select people rather than families, people with lots of siblings will be

over-represented)

7.2.1 Definition (Expected Value)
Let 𝑋 be a discrete random variable with range(𝑋) = 𝐴 and probability function 𝑓(𝑥). The expected
value (also called the mean or the expectation) of 𝑋 is given by

𝜇 = 𝐸 [𝑋] = ∑
𝑥∈𝐴

𝑥𝑓(𝑥)

REMARK 7.2.1. 𝜇 will be within the range but not necessarily equal to a possible value of 𝑥.
We might be interested in the expected value of some function of 𝑋, 𝑔(𝑋).
Example
Tax credit of $1000 plus $250 per kid. Find the average cost.

𝑥 1 2 3 4 5
𝑔(𝑥) 1250 1500 1750 2000 2250

Average cost = weighted average of 𝑔(𝑥) values = (1250)(0.43) + ⋯ + (2250)(0.01) = 1450

7.2.2 Theorem
Let 𝑋 be a discrete random variable with range(𝑋) = 𝐴 and probability function 𝑓(𝑥). The expected
value of a some function 𝑔(𝑋) of 𝑋 is given by

𝐸 [𝑔(𝑋)] = ∑
𝑥∈𝐴

𝑔(𝑥)𝑓(𝑥)

Note that 𝑔(𝑥) = 1000 + 250𝑥 from last example.
𝐸[𝑔(𝑋)] = 1000 + 250𝐸[𝑋] = 1450

What if tax credit = 2000
𝑥

𝐸[𝑔(𝑋)] = (2000)(0.43) + (1000)(0.40) + ⋯ + (400)(0.01) = 1364
But 2000

𝐸[𝑋] = 2000
1.8 = 1111.11. Therefore

𝐸[𝑔(𝑋)] ≠ 𝑔(𝐸[𝑋])
unless 𝑔 is a linear function. That is, if 𝑔(𝑋) = 𝑎𝑋 + 𝑏, then 𝐸[𝑔(𝑋)] = 𝑎𝐸[𝑋] + 𝑏

7.2.3 Theorem
Let 𝑋 be a discrete random variable with range(𝑋) = 𝐴 and probability function 𝑓(𝑥). For constants
𝑎 and 𝑏 and some function 𝑔(𝑋),

𝐸[𝑎𝑔(𝑋) + 𝑏] = 𝑎𝐸[𝑔(𝑋)] + 𝑏
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Proof.

𝐸[𝑎𝑔(𝑋) + 𝑏] = ∑
𝑥∈𝐴

(𝑎𝑔(𝑥) + 𝑏) 𝑓(𝑥)

= ∑
𝑥∈𝐴

(𝑎𝑔(𝑥)𝑓(𝑥) + 𝑏𝑓(𝑥))

= 𝑎 ∑
𝑥∈𝐴

𝑔(𝑥)𝑓(𝑥) + 𝑏 ∑
𝑥∈𝐴

𝑓(𝑥)

= 𝑎𝐸[𝑔(𝑋)] + 𝑏 [since ∑
𝑥∈𝐴

𝑓(𝑥) = 1]

7.2.4 Theorem
Let 𝑋 be a discrete random variable with range(𝑋) = 𝐴 and probability function 𝑓(𝑥). For constants
𝑎 and 𝑏 and some functions 𝑔1(𝑋), 𝑔2(𝑋),

𝐸[𝑎𝑔1(𝑋) + 𝑏𝑔2(𝑋)] = 𝑎𝐸[𝑔1(𝑋)] + 𝑏𝐸[𝑔2(𝑋)]

Proof.

𝐸[𝑎𝑔1(𝑋) + 𝑏𝑔2(𝑋)] = ∑
𝑥∈𝐴

(𝑎𝑔1(𝑥) + 𝑏𝑔2(𝑥)) 𝑓(𝑥)

= ∑
𝑥∈𝐴

(𝑎𝑔1(𝑥)𝑓(𝑥) + 𝑏𝑔2(𝑥)𝑓(𝑥))

= 𝑎 ∑
𝑥∈𝐴

𝑔1(𝑥)𝑓(𝑥) + 𝑏 ∑
𝑥∈𝐴

𝑔2(𝑥)𝑓(𝑥)

= 𝑎𝐸[𝑔1(𝑋)] + 𝑏𝐸[𝑔2(𝑋)]

7.3 Some Applications of Expectation
Example
A web server has a cache. Takes 10ms to check, 20% of the requests are found (cache hit) and immediately
shown. If it’s not found (cache miss), it takes 50⏟

to server
+ 70⏟

lookup
+ 50⏟

to client
additional milliseconds to get info and

display. Is it worth it? Let 𝑋 = # of milliseconds to display the information.
𝑥 10 10+50+70+50=180

𝑓(𝑥) 0.2 0.8

𝐸[𝑋] = (10)(0.2) + (180)(0.8) = 146ms

Time no cache = 50 + 70 + 50 = 170ms.
Since 146ms < 170ms, it’s worth it!
Example
Roulette: each of 38 numbers is equally likely
(1) If you bet 1 dollar on number 7 → pays 35 ∶ 1
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OR
(2) If you bet 50 cents on red → pays 1 ∶ 1 and 50 cents on first 12 numbers → pays 2 ∶ 1

(1) 𝑥 0 36
𝑓(𝑥) 37/38 1/38

(2)
𝑦 0 1 1.50 2.50

𝑓(𝑦) 14/38⏟
neither

12/38⏟
red

6/38⏟
black

6/38⏟
both red

𝐸[𝑋] = 0 (37
38) + 36 ( 1

38) = 0.94737

𝐸[𝑌 ] = 0 (14
38) + 1 (12

38) + 1.5 ( 6
38) + 2.5 ( 6

38) = 0.94737

LECTURE 18

7.4 Means and Variances of Distributions
The mean 𝐸[𝑋] tells us where the distribution is on average. We also need a way to describe how spread out
a distribution is. Variance could be 𝐸[𝑋 − 𝜇] = 0.
What about 𝐸[|𝑋 − 𝜇|]

• need cases to evaluate
• non-differentiable at point 𝑋 − 𝜇
• linear penalty for being away from the mean

Instead we use 𝐸[(𝑋 − 𝜇)2]

7.4.1 Definition (Variance)
The variance of a random variable 𝑋, denoted by 𝑉 𝑎𝑟(𝑋) or by 𝜎2, is

𝜎2 = 𝑉 𝑎𝑟(𝑋) = 𝐸 [(𝑋 − 𝜇)2]

Example
𝑋 = # on fair 6-sided die
𝐸[𝑋] = 3.5
𝐸[(𝑥 − 3.5)2]
𝐸[𝑋]2 − 3.52

𝑥 1 2 3 4 5 6
𝑥2 1 4 9 16 25 36
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Alternate form (calculation form)

𝑉 𝑎𝑟(𝑋) = 𝐸[(𝑋 − 𝐸[𝑋])2]
= 𝐸[𝑋2 − 2𝑋𝐸[𝑋] + 𝐸[𝑋]2]
= 𝐸[𝑋2] − 2𝐸[𝑋]𝐸[𝑋] + 𝐸[𝑋]2
= 𝐸[𝑋2] − 2(𝐸[𝑋])2 + 𝐸[𝑋]2
= 𝐸[𝑋2] − 𝐸[𝑋]2

= ∑
all 𝑥

𝑥2𝑓(𝑥) − (∑
all 𝑥

𝑥𝑓(𝑥))
2

7.4.2 Example (Roulette)
𝑋 = 0 or 36 (dollars)

𝑥 0 36
𝑓(𝑥) 37/38 1/38

𝐸[𝑋] = 0.94737

𝑉 𝑎𝑟(𝑋) = 𝐸[𝑋2] − 0.947372 = 362( 1
36) − 0.947372 = 33.207 dollars2

To interpret the variance better, we often take the square root to get the same units of the original vari-
able.

7.4.3 Definition (Standard Deviation)
The standard deviation of a random variable 𝑋 is

𝜎 = 𝑆𝐷(𝑋) = √𝑉 𝑎𝑟(𝑋)

𝑆𝐷(𝑋) =
√

33.207 = 5.76

What if we bet $1 on red. Y=winnings
𝑦 0 2

𝑓(𝑦) 20/38 18/38
𝐸[𝑌 ] = 0.94737

𝑉 𝑎𝑟(𝑌 ) = 𝐸[𝑌 2] − 0.947372 = 0.97723
𝑆𝐷(𝑌 ) = 0.9986

7.4.4 Linear Transformations
If 𝑌 = 𝑎𝑋 + 𝑏, and we know 𝐸[𝑋] and 𝑉 𝑎𝑟(𝑋), what can we say about 𝐸[𝑌 ] and 𝑉 𝑎𝑟(𝑌 ).

𝐸[𝑌 ] = 𝑎𝐸[𝑋] + 𝑏

𝑉 𝑎𝑟(𝑌 ) = 𝐸[(𝑌 − 𝐸[𝑌 ])2]
= 𝐸[(𝑎𝑋 + 𝑏) − (𝑎𝐸[𝑋] + 𝑏)2]
= 𝐸[𝑎2𝑋2 − 2𝑋𝐸[𝑋] + 𝐸[𝑋]2]
= 𝑎2𝐸[(𝑋 − 𝐸[𝑋])2]
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𝑉 𝑎𝑟(𝑌 ) = 𝑎2𝑉 𝑎𝑟(𝑋)
𝑆𝐷(𝑌 ) = |𝑎|𝑆𝐷(𝑋)

LECTURE 19*

Example
Suppose 𝑋 has probability function:

𝑥 0 1 2 3 4
𝑦 1 3 5 7 9

𝑓(𝑥) 0.1 0.1 0.1 0.5 0.2
Let 𝑌 = 2𝑋 + 1.
𝐸[𝑋] = 2.6
𝐸[𝑋2] = 6.2
𝐸[𝑌 ] = 6.2
𝐸[𝑌 2] = 94.2
𝑉 𝑎𝑟(𝑋) = 8.2 − 2.62 = 1.44
𝑆𝐷(𝑋) = 1.2
𝑉 𝑎𝑟(𝑌 ) = 44.2 − 6.2=5.76
𝑆𝐷(𝑌 ) = 2.4
Now we can verify,

𝐸[𝑌 ] = 𝐸[2𝑋 + 1]
= 2𝐸[𝑋] + 1
= 2(2.6) + 1
= 6.2

𝑉 𝑎𝑟(𝑌 ) = 22𝑉 𝑎𝑟(𝑋) = 4(1.44) = 5.76
𝑆𝐷(𝑌 ) = |2|𝑆𝐷(𝑋) = 2(1.2) = 2.4
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Let 𝑋 ∼ Binomial(𝑛, 𝑝). Find 𝐸[𝑋].

𝐸[𝑋] = ∑
all 𝑥

𝑥𝑓(𝑥) (7.1)

=
𝑛

∑
𝑥=0

𝑥(𝑛
𝑥)𝑝𝑥(1 − 𝑝)𝑛−𝑥 (7.2)

=
𝑛

∑
𝑥=1

𝑥(𝑛
𝑥)𝑝𝑥(1 − 𝑝)𝑛−𝑥 (7.3)

=
𝑛

∑
𝑥=1

𝑥 𝑛!
𝑥!(𝑛 − 𝑥)!𝑝

𝑥(1 − 𝑝)𝑛−𝑥 (7.4)

=
𝑛

∑
𝑥=1

𝑥 𝑛!
𝑥(𝑥 − 1)!(𝑛 − 𝑥)!𝑝

𝑥(1 − 𝑝)𝑛−𝑥 (7.5)

=
𝑛

∑
𝑥=1

𝑛!
(𝑥 − 1)!(𝑛 − 𝑥)!𝑝

𝑥(1 − 𝑝)𝑛−𝑥 (7.6)

=
𝑛

∑
𝑥=1

𝑛(𝑛 − 1)!
(𝑥 − 1)![(𝑛 − 1) − (𝑥 − 1)]!𝑝𝑝𝑥−1(1 − 𝑝)(𝑛−1)−(𝑥−1) (7.7)

= 𝑛𝑝(1 − 𝑝)𝑛−1
𝑛

∑
𝑥=1

(𝑛 − 1
𝑥 − 1)𝑝𝑥−1(1 − 𝑝)−(𝑥−1) (7.8)

= 𝑛𝑝(1 − 𝑝)𝑛−1
𝑛

∑
𝑥=1

(𝑛 − 1
𝑥 − 1) ( 𝑝

1 − 𝑝)
𝑥−1

(7.9)

From (2) to (3) we used to fact that when 𝑥 = 0 the value of the expression is 0. Provided that 𝑥 ≠ 0, we can
expand 𝑥! as 𝑥(𝑥 − 1)! as seen from (4) to (5). Let 𝑦 = 𝑥 − 1, we get

𝐸[𝑋] = 𝑛𝑝(1 − 𝑝)𝑛−1
𝑛

∑
𝑦=0

(𝑛 − 1
𝑦 ) ( 𝑝

1 − 𝑝)
𝑦

(7.10)

= 𝑛𝑝(1 − 𝑝)𝑛−1 (1 + 𝑝
1 − 𝑝)

𝑛−1
(7.11)

= 𝑛𝑝(1 − 𝑝)𝑛−1 (1 − 𝑝 + 𝑝)𝑛−1

(1 − 𝑝)𝑛−1 (7.12)

= 𝑛𝑝 (7.13)

From (10) to (11) we used the Binomial Theorem.
Let 𝑋 ∼ Poisson(𝜇). Find 𝐸[𝑋].

𝐸[𝑋] = ∑
all 𝑥

𝑥𝑓(𝑥) (7.1)

=
∞

∑
𝑥=0

𝑥𝑒−𝜇𝜇𝑥

𝑥! (7.2)

=
∞

∑
𝑥=1

𝑥 𝑒−𝜇𝜇𝑥

𝑥(𝑥 − 1)! (7.3)

=
∞

∑
𝑥=1

𝜇𝑒−𝜇𝜇𝑥−1

(𝑥 − 1)! (7.4)

(7.5)
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Let 𝑦 = 𝑥 − 1, we get

𝐸[𝑋] = 𝜇𝑒−𝜇
∞

∑
𝑦=0

𝜇𝑦

𝑦! (7.6)

= 𝜇𝑒−𝜇𝑒𝜇 (7.7)
= 𝜇 (7.8)

From (6) to (7) we used the fact that 𝑒𝑥 =
∞
∑
𝑦=0

𝑥𝑦
𝑦! .

Similarly,
𝑋 ∼ 𝒰[𝑎, 𝑏], 𝐸[𝑋] = 𝑎 + 𝑏

2
𝑋 ∼ Hyp(𝑁, 𝑟, 𝑛), 𝐸[𝑋] = 𝑛𝑟

𝑁
𝑋 ∼ NB(𝑘, 𝑝), 𝐸[𝑋] = 𝑘(1 − 𝑝)

𝑝

𝑋 ∼ Geometric(𝑝), 𝐸[𝑋] = 1 − 𝑝
𝑝

Let 𝑋 ∼ Poisson(𝜇). Find 𝑉 𝑎𝑟(𝑋).
Since there’s 𝑥! in the denominator of 𝑓(𝑥), let’s find 𝐸[𝑋(𝑋 − 1)].

𝐸[𝑋(𝑋 − 1)] =
∞

∑
𝑥=0

𝑥(𝑥 − 1)𝜇𝑥𝑒−𝜇

𝑥!

=
∞

∑
𝑥=2

𝑥(𝑥 − 1) 𝜇𝑥𝑒−𝜇

𝑥(𝑥 − 1)(𝑥 − 2)!

= 𝜇2𝑒−𝜇
∞

∑
𝑥=2

𝜇𝑥−2

(𝑥 − 2)!

Let 𝑦 = 𝑥 − 2, we get

𝐸[𝑋(𝑋 − 1)] = 𝜇2𝑒−𝜇
∞

∑
𝑦=0

𝜇𝑦

𝑦!
= 𝜇2

𝑉 𝑎𝑟(𝑋) = 𝐸[𝑋(𝑋 − 1)] + 𝐸[𝑋] − 𝐸[𝑋]2
= 𝜇2 + 𝜇 − 𝜇2

= 𝜇

LECTURE 20*

Example
Suppose the amount of data you use on your phone (in units of 100MB) has a Poisson distribution with mean
7 per month. You pay 15 per month plus 3 per 100MB. Find the standard deviation of random month’s phone
bill.
Let 𝑋 = # of units of data used. 𝑋 ∼ Poisson(7). Let 𝑌 = 15 + 3𝑋 → 𝐸[𝑌 ] = 15 + 3(7) = 36.
𝑆𝐷(𝑌 ) = 3𝑆𝐷(𝑋) = 3

√
7 = 7.94.



Chapter 8

Continuous Random Variables

LECTURE 21

8.1 General Terminology and Notation
A continuous random variable 𝑋 maps points in a continuous sample space to real numbers such that the range
is uncountably infinite.
EXAMPLES OF CONTINUOUS RANDOM VARIABLES
Let 𝑋 be the number the point spots at.
(1) temperature of a day
(2) length of time until a bus arrives
(3) height of a random person
(4) average height of 10 people

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥)
𝐹(𝑎) = 𝑃 (𝑋 ≤ 𝑎)
Example
For 𝑥 < 0, no chance of the point stopping at a number < 0.
For 𝑥 > 4, 𝐹(𝑥) = 1 since the point is certain to stop at a number below 4.
𝑃(0 < 𝑥 ≤ 1) = 1

4 = 𝐹(1)

𝐹(𝑥) =
⎧{
⎨{⎩

0, 𝑥 < 0
𝑥
4 , 0 ≤ 𝑥 ≤ 4
1, 𝑥 > 4

PROPERTIES OF 𝐹(𝑥)
(1) For all 𝑥, 𝑃(𝑋 = 𝑥) = 0. So,

𝑃(𝑎 < 𝑥 ≤ 𝑏) = 𝑃(𝑎 ≤ 𝑥 ≤ 𝑏)
= 𝑃(𝑎 < 𝑥 < 𝑏)
= 𝑃(𝑎 ≤ 𝑥 < 𝑏)

40
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REMARK 8.1.1. End points don’t matter.
(2)

lim
𝜀→0

𝐹(𝑥) − 𝐹(𝑥 − 𝜀) = lim
𝜀→0

𝑃(𝑥 − 𝜀 < 𝑋 ≤ 𝑥)
= 𝑃(𝑋 = 𝑥)
= 0

Thus lim
𝜀→0

𝐹(𝑥 − 𝜀) = 𝐹(𝑥), so 𝐹(𝑥) is continuous.

(3) 𝐹(𝑥) is non-decreasing.
(4) lim

𝑥→+∞
𝐹(𝑥) = 1, lim

𝑥→−∞
𝐹(𝑥) = 0

(5) 0 ≤ 𝐹(𝑥) ≤ 1

8.1.1 Definition (Probability Density Function)
The probability density function (p.d.f) 𝑓(𝑥) for a continuous random variable 𝑋 is the derivative

𝑓(𝑥) = 𝑑
𝑑𝑥𝐹(𝑥)

where 𝐹(𝑥) is the cumulative distribution function for 𝑋.

REMARK 8.1.2. 𝑓(𝑥) is not a probability. It can be > 1 relative likelihood that 𝑋 takes a value near 𝑋.
PROPERTIES OF 𝑓(𝑥)
(1)

𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝐹(𝑏) − 𝐹(𝑎)

=
𝑏

∫
𝑎

𝑓(𝑥)𝑑𝑥

(2)
+∞

∫
−∞

𝑓(𝑥)𝑑𝑥 = 𝐹(+∞) − 𝐹(−∞)

= 1 − 0
= 1

(3) 𝑓(𝑥) ≥ 0 (since 𝐹(𝑥) is non-decreasing, it’s derivative is non-negative)
(4)

𝐹(𝑥) =
𝑥

∫
−∞

𝑓(𝑢)𝑑𝑢

Example
Suppose a continuous random variable 𝑋 is on the range [0, 1] has the cumulative distribution function 𝐹(𝑥) =
𝑥2.
WHAT IS THE PROBABILITY DENSITY FUNCTION?
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𝑓(𝑥) = 𝑑
𝑑𝑥 𝐹(𝑥) = 2𝑥.

WHAT IS 𝑃(𝑋 = 0.25)?
𝑃(𝑋 = 0.25) = 0
WHAT IS 𝑃(𝑋 ≤ 0.25)?
(1) 𝑃(𝑋 ≤ 0.25) = 𝐹(0.25) = (0.25)2 = 0.0625
(2)

𝑃(𝑋 ≤ 0.25) =
0.25

∫
0

𝑓(𝑥)𝑑𝑥 =
0.25

∫
0

2𝑥𝑑𝑥 = 0.625

Expectation:

𝐸[𝑋] =
+∞

∫
−∞

𝑥𝑓(𝑥)𝑑𝑥 = ∫
𝑥∈range

𝑥𝑓(𝑥)𝑑𝑥

Variance:

𝑉 𝑎𝑟(𝑋) = 𝐸[𝑋2] − 𝐸[𝑋]2 =
+∞

∫
−∞

𝑥2𝑓(𝑥)𝑑𝑥 −
+∞

∫
−∞

𝑥𝑓(𝑥)𝑑𝑥

8.1.2 Definition (Percentiles)
The 𝑝th percentile of a distribution 𝑥𝑝 such that 𝐹(𝑥𝑝) = 𝑝.

LECTURE 22

Example
𝐹(𝑥) = 𝑥2 for 0 < 𝑥 < 1.
FIND THE MEAN, MEDIAN, AND MODE
Mean:

𝐸[𝑋] =
1

∫
0

𝑥2𝑥𝑑𝑥 =
1

∫
0

2𝑥2𝑑𝑥 = [2𝑥3

3 ]
1

0
= 2

3

Median: 𝑥0.5 satisfies 𝐹(𝑥0.5) = 0.5 ⟹ (𝑥0.5)2 = 0.5 ⟹ 𝑥0.5 =
√

0.5 = 0.707
Mode: 1 (𝑥 value that maximizes 𝑓(𝑥))

8.2 Continuous Uniform Distribution
A continuous random variable takes real values between 𝑎 and 𝑏 with 𝑎 < 𝑏 such that any interval of fixed size
is equally likely.
NOTATION
𝑋 ∼ 𝑈(𝑎, 𝑏)



CHAPTER 8. CONTINUOUS RANDOM VARIABLES 43

REMARK 8.2.1. Can include or exclude endpoints, doesn’t matter.
FIND 𝑓(𝑥)
𝑓(𝑥) = 𝑐, (since it can’t depend on 𝑥). We need

∞

∫
−∞

𝑓(𝑥) 𝑑𝑥 = 1

𝑏

∫
𝑎

𝑐 𝑑𝑥 = 1

[𝑐𝑥]𝑏𝑎 = 1 ⟹ 𝑐(𝑏 − 𝑎) = 1 ⟹ 𝑐 = 1
𝑏−𝑎

So,

𝑓(𝑥) = {
1

𝑏−𝑎 , 𝑎 ≤ 𝑥 ≤ 𝑏
0, otherwise

FIND 𝐹(𝑥)

𝐹(𝑥) =
𝑥

∫
−∞

𝑓(𝑢)𝑑𝑢 =
𝑥

∫
𝑎

1
𝑏 − 𝑎𝑑𝑢 = [ 𝑢

𝑏 − 𝑎]
𝑥

𝑎
= 𝑥 − 𝑎

𝑏 − 𝑎

𝐹(𝑥) =
⎧{
⎨{⎩

𝑥−𝑎
𝑏−𝑎 , 𝑎 < 𝑥 < 𝑏
0, 𝑥 < 𝑎
1, 𝑥 > 𝑏

FIND THE MEAN, MEDIAN AND MODE
Mean:

𝐸[𝑋] =
𝑏

∫
𝑎

𝑥 1
𝑏 − 𝑎𝑑𝑥 = [(𝑥2

2 ) ( 1
𝑏 − 𝑎)]

𝑏

𝑎
= 𝑏2 − 𝑎2

2(𝑏 − 𝑎) = 𝑏 + 𝑎
2

Median: is also 𝑎+𝑏
2

Mode: no unique mode
Similarly,

𝑉 𝑎𝑟(𝑥) = (𝑏 − 𝑎)2

12
SPECIAL CASE
𝑈 ∼ 𝑈(0, 1) (i.e. 𝑎 = 0, 𝑏 = 0)

𝑓(𝑢) = {1, 0 < 𝑢 < 1
0, otherwise

𝐹(𝑢) =
⎧{
⎨{⎩

𝑢, 0 < 𝑢 < 1
0, 𝑢 < 0
1, 𝑢 > 1

𝑈(0, 1) random variables are easy to generate.
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8.2.1 Change of Variables
Suppose you know the distribution of 𝑋 and you want the distribution of 𝑌 = 𝑔(𝑋).

1. Write the cumulative distribution function of 𝑌 in terms of the cumulative distribution function of 𝑋
2. Sub in what we know about 𝑋, then differentiate to get the pdf
3. Determine the range of 𝑌

8.2.2 Example (Change of Variable)
Let 𝑋 ∼ 𝑈(0, 4), 𝐹𝑋(𝑥) = 𝑥

4 , 𝑓𝑋(𝑥) = 1
4 𝑥 ∈ (0, 4)

Let 𝑌 = 1
𝑋

1.

𝐹𝑌 (𝑦) = 𝑃 (𝑌 ≤ 𝑦)

= 𝑃 ( 1
𝑋 ≤ 𝑦)

= 𝑃 (𝑋 > 1
𝑦 )

= 1 − 𝐹𝑋 (1
𝑦 )

2.

𝐹𝑌 (𝑦) = 1 − 𝐹𝑋 (1
𝑦 )

= 1 −
1
𝑦
4

= 1 − 1
4𝑦

𝑓𝑌 (𝑦) = 𝑑
𝑑𝑥 𝐹𝑌 (𝑦) = 1

4𝑦2

OR differentiate 𝐹𝑌 (𝑦) before substituting in the information about 𝑋. You need the chain rule!

𝑑
𝑑𝑦 [1 − 𝐹𝑋 (1

𝑦 )] = −𝑓𝑋 (1
𝑦 ) (− 1

𝑦2 ) = 1
4𝑦2

3. 𝑦 ∈ ( 1
4 , ∞)

LECTURE 23

Example
Let 𝑌 ∼ 𝑈(0, 1) ⟹ 𝑓𝑌 (𝑦) = 1

1−0 = 1, 𝐹𝑌 (𝑦) = 𝑦−0
1−0 = 𝑦

𝑋 = 2 3√𝑌 .
FIND 𝑓𝑋(𝑥)
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1.

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥)
= 𝑃 (2 3√𝑌 ≤ 𝑥)

= 𝑃 (𝑌 ≤ 𝑥3

8 )

= 𝐹𝑌 (𝑥3

8 )

2.

𝐹𝑋(𝑥) = 𝐹𝑌 (𝑥3

8 )

= 𝑥3

8
𝑓𝑋(𝑥) = 𝑑

𝑑𝑥 𝐹𝑋(𝑥) = 3
8 𝑥2

3. 𝑥 ∈ (0, 2)

8.3 Exponential Distribution
Suppose we have a Poisson Process with rate 𝜆. Let 𝑋 = time until the next event occurs. 𝑋 has an exponential
distribution.
FIND RANGE, 𝐹(𝑥), AND 𝑓(𝑥)
𝑥 ∈ (0, ∞)

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥)
= 𝑃(time to next event ≤ 𝑥)
= 𝑃(number of events in (0, 𝑥)) ≥ 1
= 𝑃(𝑌 ≥ 1) 𝑌 ∼ Poisson(𝜆𝑥)
= 1 − 𝑃(𝑌 = 0)

= 1 − (𝑒−𝜆𝑥)(𝜆𝑥)0

0!

= {1 − 𝑒−𝜆𝑥, 𝑥 > 0
0, 𝑥 ≤ 0

Alternate forms: 𝜃 = 1
𝜆 , so

𝐹(𝑥) = 1 − 𝑒− 𝑥
𝜃

𝑓(𝑥) = 1
𝜃 𝑒− 𝑥

𝜃

We say 𝑋 ∼ 𝐸𝑥𝑝(𝜃).

LECTURE 24

FIND THE MEAN AND VARIANCE
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𝐸[𝑋] =
∞

∫
0

𝑥1
𝜃 𝑒− 𝑥

𝜃 𝑑𝑥 IBP

Trick: Gamma Function

𝛤(𝛼) =
∞

∫
0

𝑥𝛼−1𝑒−𝑥𝑑𝑥

where 𝛼 > 0
PROPERTIES OF THE GAMMA FUNCTION
(1) if 𝛼 > 1, then 𝛤(𝛼) = (𝛼 − 1)𝛤(𝛼 − 1)
(2) if 𝛼 is an integer ≥ 1,

𝛤(1) = 1
𝛤(2) = 1𝛤(1) = 1
𝛤(3) = 2𝛤(2) = 2
𝛤(4) = 3𝛤(3) = 6

In general,
𝛤(𝛼) = (𝛼 − 1)!

So, back to our example:

𝐸[𝑋] =
∞

∫
0

𝑥1
𝜃 𝑒− 𝑥

𝜃 𝑑𝑥 𝑦 = 𝑥
𝜃 ⟹ 𝑥 = (𝜃𝑦) ∧ 𝜃𝑑𝑦 = 𝑑𝑥

=
∞

∫
0

(𝜃𝑦)1
𝜃 𝑒−𝑦𝜃𝑑𝑦

= 𝜃
∞

∫
0

𝑦2−1𝑒−𝑦𝑑𝑦 𝛤(2) = (2 − 1)! = 1

= 𝜃

𝐸[𝑋] = 𝜃 = 1
𝜆

Why? If 𝜆 is higher, events happen more often, which means shorter wait time.
To find 𝑉 𝑎𝑟(𝑋),

𝐸[𝑋]2 =
∞

∫
0

𝑥2 1
𝜃 𝑒− 𝑥

𝜃 𝑑𝑥 𝑦 = 𝑥
𝜃 ⟹ 𝑥2 = (𝜃𝑦)2 ∧ 𝜃𝑑𝑦 = 𝑑𝑥

=
∞

∫
0

(𝜃𝑦)2 1
𝜃 𝑒−𝑦𝜃𝑑𝑦

= 𝜃2
∞

∫
0

𝑦3−1𝑒−𝑦𝑑𝑦 𝛤(3) = (3 − 1)! = 2

= 2𝜃2

So 𝑉 𝑎𝑟(𝑋) = 2𝜃2 − 𝜃2 = 𝜃2, 𝑆𝐷(𝑋) = 𝜃 = 𝐸[𝑋]
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8.3.1 Memoryless Property
Example
Suppose buses follow a Poisson process with average 5 per hour.
(a) Find the probability that you wait > 15 minutes.
Let 𝑋 = time until next bus. 𝑋 ∼ 𝐸𝑥𝑝(12)
𝑃(𝑋 > 15) = 1 − 𝐹(𝑋 ≤ 15) = 1 − (1 − 𝑒− 15

12 ) = 𝑒− 15
12 ≈ 0.2865

(b) If you have been waiting 6 minutes already, what is the probability that you wait another > 15 more
minutes.

𝑃(𝑋 > 21 ∣ 𝑋 > 6) = 𝑃(𝑋 > 21 AND 𝑋 > 6)
𝑃(𝑋 > 6)

= 𝑃(𝑋 > 21)
𝑃(𝑋 > 6)

= 1 − 𝐹(21)
1 − 𝐹(6)

= 1 − (1 − 𝑒− 21
12 )

1 − (1 − 𝑒− 6
12 )

= 𝑒− 15
12 ≈ 0.2865

The memoryless property says the past is irrelevant in the future distribution. In general, if 𝑠, 𝑡 > 0:

𝑃(𝑋 > 𝑡 + 𝑠 ∣ 𝑋 > 𝑠) = 𝑃(𝑋 > 𝑡)

8.5 Normal Distribution
Many natural phenomena tend to follow a shape like this:

• amount of precipitation
• heights/weights of large populations
• measurement errors
• grades in courses
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A normal random variable 𝑋 with parameters 𝜇 and 𝜎2 has pdf

𝑓(𝑥) = 1√
2𝜋𝜎 𝑒−(𝑥−𝜇)2/(2𝜎2)

for 𝑥 ∈ ℝ

• symmetric around 𝜇
• both tails go to zero quickly
• 1√

2𝜋𝜎 makes it integrate to 1.

We can show that 𝐸[𝑋] = 𝜇 and 𝑉 𝑎𝑟(𝑋) = 𝜎2

8.5.1 Empirical rule

FIND 𝑓(𝑥)

𝐹(𝑥) =
𝑥

∫
−∞

1√
2𝜋𝜎 𝑒−(𝑢−𝜇)2/(2𝜎2)𝑑𝑢

• not analytically integrable
• look it up or numerically evaluate

Standard Normal random variable (special case with 𝜇 = 0, 𝜎2 = 1)
𝑍 ∼ 𝑁(0, 1)

𝑓(𝑧) = 1√
2𝜋 𝑒−𝑧2/2

𝐹(𝑧) still has no closed form.
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FIND 𝑃(𝑍 ≤ 2.31)
𝑃 (𝑍 ≤ 2⏟

row
. 31⏟
col

) = 0.98956

FIND 𝑃(𝑍 ≤ −0.63)
𝑃 (𝑍 ≤ −0.63) = 𝑃(𝑍 > 0.63) = 1 − 𝑃(𝑍 ≤ 0.63) = 1 − 0.73565 = 0.26435

MLIW 9: Setting the Threshold for a Classifier
Imagine we send a voltage of +2 (for 1) or −2 (for 0) over a connection to convey a string of bits. The
connection is noisy and adds a 𝑁(0, 1) distributed amount of voltage to whatever signal is sent.
The person receiving the message on the other side must interpret the incoming signal as either a 1 or 0, based
on a threshold 𝑐. If the voltage is above 𝑐, it will interpret it as a 1, otherwise a 0.
Find 𝑃(error) if 𝑐 = 0.5
Solution.
𝑃(error) if a 1 was sent: 𝑅 = 2 + 𝑍. 𝑍 ∼ 𝑁(0, 1)

𝑃 (error) = 𝑃(𝑅 < 0.5)
= 𝑃(2 + 𝑍 < 0.5)
= 𝑃(𝑍 < −1.5)
= 𝑃(𝑍 > 1.5)
= 1 − 𝑃(𝑍 ≤ 1.5)
= 1 − 0.93319
= 0.06681

𝑃(error) if a 0 was sent: 𝑅 = −2 + 𝑍. 𝑍 ∼ 𝑁(0, 1)
𝑃 (error) = 𝑃(𝑅 > 0.5)

= 𝑃(−2 + 𝑍 > 0.5)
= 𝑃(𝑍 > 2.5)
= 1 − 𝑃(𝑍 ≤ 2.5)
= 1 − 0.99379
= 0.006621

Why? We had 𝑐 = 0.5 closer to 2 than −2, thus the probability of error is higher for 1’s sent than for 0’s.
If we wanted the probabilities of error to be equal no matter what input, we could set 𝑐 = 0.
Find 𝑃(error) if 𝑐 = 0
Solution.
𝑃(error) if a 1 was sent: 𝑅 = 2 + 𝑍. 𝑍 ∼ 𝑁(0, 1)

𝑃 (error) = 𝑃(𝑅 < 0)
= 𝑃(2 + 𝑍 < 0)
= 𝑃(𝑍 < −2)
= 𝑃(𝑍 > 2)
= 1 − 𝑃(𝑍 ≤ 2)
= 1 − 0.97725
= 0.02275
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𝑃(error) if a 0 was sent: 𝑅 = −2 + 𝑍. 𝑍 ∼ 𝑁(0, 1)

𝑃 (error) = 𝑃(𝑅 > 0)
= 𝑃(−2 + 𝑍 > 0)
= 𝑃(𝑍 > 2)
= 1 − 𝑃(𝑍 ≤ 2)
= 1 − 0.97725
= 0.02275

FIND PERCENTILES OF 𝑁(0, 1)
Suppose we want 𝑐 such that 𝑃(𝑍 < 𝑐) = 0.85

• look in body of table for ≈ 0.85 and read off row and column: 𝑐 is between 1.03 and 1.04
• use reverse table, look up row and column: 1.0364

TRANSFORMING A NORMAL RANDOM VARIABLE
Suppose 𝑋 ∼ (𝜇, 𝜎2), 𝜇, 𝜎2 < ∞.
Claim: if

𝑍 = 𝑋 − 𝜇
𝜎

then 𝑍 ∼ 𝑁(0, 1)
Proof.

1.

𝐹𝑍(𝑧) = 𝑃(𝑍 ≤ 𝑧)

= 𝑃 (𝑋 − 𝜇
𝜎 ≤ 𝑧)

= 𝑃 (𝑋 ≤ 𝑧𝜎 + 𝜇)
= 𝐹𝑋(𝜎𝑧 + 𝜇)

2. Differentiate

𝑓𝑍(𝑧) = 𝑑
𝑑𝑧 𝐹𝑍(𝑧)

= 𝑑
𝑑𝑧 𝐹𝑋(𝜎𝑧 + 𝜇)

= 𝑓𝑋(𝜎𝑧 + 𝜇)𝜎 CHAIN RULE

= ( 1√
2𝜋𝜎 𝑒−((𝜎𝑧+𝜇)−𝜇)2/(2𝜎2)) 𝜎

= 1√
2𝜋 𝑒−𝑧2/2

3. range of 𝑍 is ℝ, so 𝑍 ∼ 𝑁(0, 1)
Example
MCAT scores are normal with mean 25.3 and standard deviation 6.5.
A SCORE OF 41 IS HOW GOOD?
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Find 𝑃(𝑋 > 41) where 𝑋 ∼ 𝑁(25.3, 6.52)

𝑃 (𝑋 − 25.3
6.5 > 41 − 25.3

6.5 ) = 𝑃(𝑍 > 2.42) = 1 − 0.99202 = 0.00798

Example
You want 98% of the population to use a ride by height. 𝑋 = height ∼ 𝑁(69, 2.42). That is, find ℎ such that
𝑃(𝑋 < ℎ) = 0.98, so

𝑃 (𝑋 − 69
2.4 < ℎ − 69

2.4 ) = 0.98 ⟹ 𝑃 (𝑍 < ℎ − 69
2.4 ) = 0.98

Set 𝐹( ℎ−69
2.4 ) = 0.98, and solve for ℎ. You can also take 𝐹 −1 on each side.

2.0537 = ℎ − 69
2.4 ⟹ ℎ = (2.0537)(2.4) + 69 = 73.93 inches

In general,
𝑥𝑝 = 𝜎𝑧𝑝 + 𝜇

LECTURE 26

Example
If 𝑍 ∼ 𝑁(0, 1), find 𝑑 such that 𝑃(|𝑍| < 𝑑) = 0.9.

𝑃(|𝑍| < 𝑑) = 𝑃(−𝑑 < 𝑍 < 𝑑)
= 𝑃(𝑍 < 𝑑) − 𝑃(𝑍 > −𝑑)
= 𝑃(𝑍 ≤ 𝑑) − [1 − 𝑃(𝑍 ≤ 𝑑)]
= 2𝑃(𝑍 ≤ 𝑑) − 1

2𝑃(𝑍 ≤ 𝑑) − 1 = 0.90

⟹ 𝑃(𝑍 ≤ 𝑑) = 0.90 + 1
2

⟹ 𝐹(𝑑) = 0.95
⟹ 𝐹 −1(𝐹(𝑑)) = 𝐹 −1(0.95)
⟹ 𝑑 = 1.6449



Chapter 9

Multivariate Distributions

9.1 Basic Terminology and Techniques
We have models for a single RV (both discrete or cont.) but we often care about two or more RV’s at the same
time (and their relationship) Examples:

• two stock returns
• heights and weights
• number of cards of a rank vs number of a suit
• treatment vs recovery time
• all machine learning classification and regression

In this course, we focus on all discrete random variables

9.1.1 Definition (Joint Probability Function)
Let 𝑋1, … , 𝑋𝑛 be 𝑛 discrete random variables. We define the joint probability function 𝑓(𝑥1, … , 𝑥𝑛) of
(𝑋1, … , 𝑋𝑛) as

𝑓(𝑥1, … , 𝑥𝑛) = 𝑃(𝑋1 = 𝑥1 and ⋯ and 𝑋𝑛 = 𝑥𝑛)
= 𝑃(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛)

9.1.2 Theorem
• ∑

all (𝑥1,…,𝑥𝑛)
𝑓(𝑥1, … , 𝑥𝑛) = 1

• 𝑓(𝑥1, … , 𝑥𝑛) ≥ 0 for all (𝑥1, … , 𝑥𝑛)

Example
Suppose we flip a coin 3 times. Let 𝑋 = # heads. Let

𝑌 = {1, if first flip is a H
0, otherwise

Find 𝑓(𝑥, 𝑦).

52
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𝑦\𝑥 0 1 2 3
0 1/8 2/8 1/8 0/8
1 0/8 1/8 2/8 1/8

𝑓(𝑥, 𝑦) can be represented

in a table or as a function of 𝑥 and 𝑦 (not usually a histogram).
Now suppose we are only interested in one of the random variables, e.g. suppose we are only want to find
out about 𝑋.

𝑃(𝑋 = 𝑥) = 𝑓(0, 0) + 𝑓(0, 1) = 1
8 + 0 = 1

8

9.1.3 Definition (Marginal Probability Function)
Let 𝑋 and 𝑌 be two discrete random variables. We define the marginal probability function of 𝑋 as

𝑓𝑋(𝑥) = ∑
all 𝑦

𝑓(𝑥, 𝑦)

and the marginal probability function of 𝑌 as

𝑓𝑌 (𝑦) = ∑
all 𝑥

𝑓(𝑥, 𝑦)

9.1.4 Definition (Independent Random Variables)
𝑋1, … , 𝑋𝑛 are independent random variables if and only if

𝑓(𝑥1, … , 𝑥𝑛) = 𝑓1(𝑥1) ⋯ 𝑓𝑛(𝑥𝑛)

for all (𝑥1, … , 𝑥𝑛).

From example: Are 𝑋 and 𝑌 independent? No. 𝑓(0, 0) = 1
8 ≠ 𝑓𝑋(0)𝑓𝑌 (0) = 1

8 ⋅ 1
2 shortcut: any 0 in your

table → dependent.

LECTURE 27

9.1.5 Thought Question
For a full-time UW Math Faculty student, let 𝑋 = number of courses taking and 𝑌 = 1 if in co-op, or 0 if in
regular. The joint pf is given by (this is real data)

𝑦\𝑥 3 4 5 6 𝑓𝑌 (𝑦)
0 0.09 0.17 0.22 0.01
1 0.05 0.10 0.32 0.04 0.51

𝑓𝑋(𝑥) 0.54 1
Are 𝑋 and 𝑌 independent?
(a) Yes, (b) No, (c) Not enough information
Correct answer is (b): No. 𝑓(5, 1) = 0.32 ≠ 𝑓𝑋(5)𝑓𝑌 (1) = (0.54)(0.51) = 0.2754
Example
Imagine you have a card game with a total of 12 cards. Classified in three different categories: 5 cards
(money), 4 cards (action), 3 cards (useless). Draw a hand of them, in this case 3 without replacement, and
let 𝑋 = # of useless, 𝑌 = # action.
FIND THE JOINT PF AND RANGE
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𝑦\𝑥 0 1 2 3 𝑓𝑌 (𝑦)
0 10/220 30/220 15/220 1/220 56/220
1 40/220 60/220 12/220 0 112/220
2 30/220 18/220 0 0 48/220
3 4/220 0 0 0 4/220

𝑓𝑋(𝑥) 84/220 108/220 27/220 1/220 1
Range: 𝑥 ∈ {0, 1, 2, 3}, 𝑦 ∈ {0, 1, 2, 3} such that 𝑥 + 𝑦 ≤ 3
𝑓(0, 0) (no useless, no action)=𝑃 (all money)

(5
3)

(12
3 ) = 10

220
𝑓(1, 1) (1 useless, 1 action)=𝑃 (one of each type)

(3
1)(4

1)(5
1)

(12
3 ) = 60

220

𝑓(𝑥, 𝑦) =
(3

𝑥)(4
𝑦)( 5

3−𝑥−𝑦)
(12

3 )

Find marginal probability functions (sum), 𝑋 ∼ Hyp(12, 3, 3). 𝑌 ∼ Hyp(12, 4, 3). Check that the marginal
probability functions match.
Are they independent? No (don’t have a cartesian product)
Recall: conditional probability:

𝑃(𝐴 ∣ 𝐵) = 𝑃(𝐴𝐵)
𝑃(𝐵)

9.1.6 Definition (Conditional Probability Function)
The conditional probability function of 𝑋 given 𝑌 = 𝑦 is

𝑓(𝑥 ∣ 𝑦) = 𝑃(𝑋 = 𝑥 ∣ 𝑌 = 𝑦) = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)
𝑃(𝑌 = 𝑦) = 𝑓(𝑥, 𝑦)

𝑓𝑌 (𝑦)

provided 𝑓𝑌 (𝑦) > 0.
Similarly, the conditional probability function of 𝑌 given 𝑋 = 𝑥 is

𝑓(𝑦 ∣ 𝑥) = 𝑓(𝑥, 𝑦)
𝑓𝑋(𝑥)

provided 𝑓𝑋(𝑥) > 0.

Example
What is the probability that someone taking 4 courses is a co-op student?
In other words, 𝑃(𝑌 = 1 ∣ 𝑋 = 4) = 0.1

0.27 = 0.37
For 6 courses, 0.04

0.05 = 0.80.
Example
If you have 1 action card, find the pf of the number of useless cards.

i.e. the pf of 𝑋 ∣ 𝑌 = 1 𝑥 0 1 2
𝑓(𝑥 ∣ 1) 40/112 60/112 12/112
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9.1.7 Functions of 2 or more random variables
Suppose 𝑈 is some function of 𝑋 and 𝑌 , e.g. 𝑈 = 𝑋 − 𝑌 . To find the pf of 𝑈 .

𝑦\𝑥 3 4 5 6
0 3 4 5 6
1 2 3 4 5

1. determine the possible values of 𝑈 for each pair (𝑥, 𝑦), so the range is 𝑢 ∈ {2, 3, 4, 5, 6}
2. 𝑓(𝑢) is the sum of 𝑓(𝑥, 𝑦) for all combos that map to 𝑢.

𝑓(𝑢) = ∑
(𝑥,𝑦) s.t. 𝑥−𝑦=𝑢

𝑓(𝑥, 𝑦)

𝑢 2 3 4 5 6
𝑓(𝑢) 0.05 0.19 0.49 0.24 0.01

𝑢 = 2 → (𝑥 = 3, 𝑦 = 1) = 0.05
𝑢 = 3 → (𝑥 = 4, 𝑦 = 1) + (𝑥 = 3, 𝑦 = 0) = 0.1 + 0.09 = 0.19
Using the earlier table:

𝑦\𝑥 3 4 5 6
0 0.09 0.17 0.22 0.07
1 0.05 0.1 0.32 0.04

LECTURE 28

9.1.8 Thought Question
Suppose 𝑋 = # apple products and 𝑌 = # Microsoft products (given at least one of each) have a joint
pf:

𝑦\𝑥 1 2 3
1 0.30 0.17 0.20
2 0.17 0.10 0.06

Find 𝑃(𝑋 + 𝑌 = 4)
(a) 0.10, (b) 0.20, (c) 0.30, (d) 0.40, (e) none
Correct answer is (c): 𝑃(𝑋 + 𝑌 = 4) = (3, 1) + (2, 2) = 0.20 + 0.10 = 0.30

9.1.9 Sums of random variables
Suppose 𝑇 = 𝑋 + 𝑌 , and 𝑋, 𝑌 are non-negative.
The range of 𝑇 is 0, 1, … ,max(𝑋) + max(𝑌 ) pf of 𝑇 is

𝑓𝑇 (𝑡) = ∑ ∑
𝑥+𝑦=𝑡

𝑓(𝑥, 𝑦)

= 𝑓(0, 𝑡) + 𝑓(1, 𝑡 − 1) + 𝑓(2, 𝑡 − 2) + ⋯ + 𝑓(𝑡, 0)

=
𝑡

∑
𝑥=0

𝑓(𝑥, 𝑡 − 𝑥)
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If 𝑋 and 𝑌 are independent, then

𝑓𝑇 (𝑡) =
𝑡

∑
𝑥=0

𝑓𝑋(𝑥)𝑓𝑌 (𝑦)(𝑡 − 𝑥)

This can be used to prove:
• sum of two independent Poisson is a Poisson random variable
• sum of 𝑘 independent Geometric(𝑃 ) is NB(𝑘, 𝑝)

9.2 Multinomial Distribution
An extension of Binomial, where each independent trial can have 𝑘 possible outcomes.
The probability of type 𝑖 is 𝑝𝑖 which is constant.

𝑝1 + 𝑝2 + ⋯ + 𝑝𝑘 = 1

We do 𝑛 trials and let 𝑋𝑖 = # of outcome 𝑖’s that occur.

𝑋1 + 𝑋2 + ⋯ + 𝑋𝑘 = 𝑛

where 𝑛 is the total number of trials.
Then we say 𝑋1, … , 𝑋𝑘 ∼ Multinomial(𝑛, 𝑝1, 𝑝2, … 𝑝𝑘).

REMARK 9.2.1. 𝑋𝑘 can be written as 𝑛 −
𝑘−1
∑
𝑖=1

𝑥𝑖 and 𝑝𝑘 can be written as 1 −
𝑘−1
∑
𝑖=1

𝑝𝑖

Example
Roll a fair 6-sided die 10 times. 𝑋1 = # 1’s 𝑋2 = # composites (4,6) 𝑋3 = # primes (2,3,5)
Find range: 𝑋𝑖 ∈ {0, … , 𝑛} 𝑛 = 10 in this case. So,

𝑋1 + 𝑋2 + 𝑋3 = 10

Find joint pf: 𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑃(𝑋11′𝑠, 𝑋2𝐶′𝑠, 𝑋3𝑃 ′𝑠). So,

10!
𝑥1!𝑥2!𝑥3!⏟⏟⏟⏟⏟
arrangements

(1
6)

𝑥1
(2

6)
𝑥2

(3
6)

𝑥3

⏟⏟⏟⏟⏟⏟⏟⏟⏟
outcomes

In general,
𝑓(𝑥1, … , 𝑥𝑘) = 𝑛!

𝑥1! ⋯ 𝑥𝑘! 𝑝
𝑥1
1 ⋯ 𝑝𝑥𝑘

𝑘

for 𝑥1 + ⋯ + 𝑥𝑘 = 𝑛 OR
𝑓(𝑥1, … , 𝑥𝑘−1) = 𝑛!

𝑥1! ⋯ 𝑥𝑘−1! 𝑝
𝑥1
1 ⋯ 𝑝𝑥𝑘−1

𝑘−1

for 𝑥1 + ⋯ + 𝑥𝑘−1 ≤ 𝑛
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Find marginal pf of 𝑥1.

𝑓1(𝑥1) =
𝑥3

∑
𝑥2

𝑓(𝑥1, 𝑥2, 𝑥3)

=
10−𝑥1

∑
𝑥2=0

𝑓(𝑥1, 𝑥2)

=
10−𝑥1

∑
𝑥2=0

10!
𝑥1!𝑥2!(10 − 𝑥1 − 𝑥2)! (1

6)
𝑥1

(1
3)

𝑥2
(1

2)
(10−𝑥1−𝑥2)

= 10!
𝑥1!(10 − 𝑥1)! (1

6)
𝑥1 10−𝑥1

∑
𝑥2=0

(10 − 𝑥1)!
𝑥2!(10 − 𝑥1 − 𝑥2)! (1

3)
𝑥2

(1
2)

(10−𝑥1−𝑥2)

= (10
𝑥1

) (1
6)

𝑥1 10−𝑥1

∑
𝑥2=0

(10 − 𝑥1
𝑥2

) (1
3)

𝑥2
(1

2)
(10−𝑥1−𝑥2)

= (10
𝑥1

) (1
6)

𝑥1
(1

3 + 1
2)

10−𝑥1

𝑓(𝑥1) = (10
𝑥1

) (1
6)

𝑥1
(5

6)
10−𝑥1

∼ Binomial(10, 1/6)

In general:
𝑋𝑖 ∼ Binomial(𝑛, 𝑝𝑖)

LECTURE 30

9.4 Expectation for Multivariate Distributions: Covariance and Corre-
lation

• Steve ≠ Diana
• Midterm # M3-3116
• Covariance
• Correlation

If 𝑋 and 𝑌 are independent:

𝐸(𝑋𝑌 ) = ∑
𝑥

∑
𝑦

𝑥𝑦𝑓(𝑥, 𝑦) by defn

= ∑
𝑥

∑
𝑦

𝑥𝑦𝑓𝑋(𝑥)𝑓𝑌 (𝑦)

= ∑
𝑥

𝑥𝑓𝑋(𝑥) ∑
𝑦

𝑦𝑓𝑌 (𝑦) 𝑋, 𝑌 indep.

= 𝐸[𝑋]𝐸[𝑌 ]

⟹ 𝐶𝑜𝑣(𝑋, 𝑌 ) = 𝐸[𝑋𝑌 ] − 𝐸[𝑋]𝐸[𝑌 ]. Thus, 𝑋, 𝑌 independent ⟹ 𝐶𝑜𝑣(𝑋, 𝑌 ) = 0, but 𝐶𝑜𝑣(𝑋, 𝑌 ) = 0
does not mean 𝑋, 𝑌 are independent.
Uncorrelated variables could still be dependent. If, for instance there is a non-linear relationship.
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Other points about covariance:
• if 𝐶𝑜𝑣 > 0, then 𝑋 ↑ ⟺ 𝑌 ↑ OR 𝑋 ↓ ⟺ 𝑌 ↓.
• if 𝐶𝑜𝑣 < 0, then 𝑋 ↓ ⟺ 𝑌 ↑ OR 𝑋 ↑ ⟺ 𝑌 ↓.
• the magnitude of 𝐶𝑜𝑣(𝑋, 𝑌 ) can’t be interpreted. We need to rescale to a restricted range to interpret

size.
Correlation

9.4.1 Definition (Correlation Coefficient)
The correlation coefficient 𝜌𝑥𝑦 of 𝑋 and 𝑌 is:

𝐶𝑜𝑟𝑟(𝑋, 𝑌 ) = 𝐶𝑜𝑣(𝑋, 𝑌 )
√𝑉 𝑎𝑟(𝑋)√𝑉 𝑎𝑟(𝑌 )

𝜌 = 𝜎𝑥𝑦
𝜎𝑥𝜎𝑦

Notes
• sign of 𝐶𝑜𝑟𝑟 = sign of 𝐶𝑜𝑣 for any given 𝑋, 𝑌 .
• −1 ≤ 𝜌𝑥𝑦 ≤ 1 (see course notes)
• only equal to ±1 if 𝑌 = 𝑎𝑋 + 𝑏

We interpret the magnitude of the correlation as the strength of the linear relationship.

Important: correlation does not imply causation!
if 𝜌 = 0.95, then

⎧{{
⎨{{⎩

𝑋 causes 𝑌 OR
𝑌 causes 𝑋 OR
𝑋, 𝑌 are caused by 𝑍
𝑋, 𝑌 are correlated by chance
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Example
(from past lecture)
Suppose 𝑋 = # apple products and 𝑌 = # Microsoft products (given at least one of each) have a joint
pf:

𝑦\𝑥 1 2 3
1 0.30 0.17 0.20
2 0.17 0.10 0.06

𝐶𝑜𝑣(𝑋, 𝑌 ) = −0.0407
𝑉 𝑎𝑟(𝑋) = 𝐸(𝑋2) − 1.792 = 0.6859
𝑉 𝑎𝑟(𝑌 ) = 𝐸(𝑌 2) − 1.332 = 0.2211
𝐶𝑜𝑟𝑟(𝑋, 𝑌 ) = −0.0407√

0.6959
√

0.2211 = −0.1045… a weak negative correlation.
Example
Roll a fair 6-sided die 10 times. 𝑋1 = # 1’s 𝑋2 = # even composites (4,6)
𝐶𝑜𝑣(𝑋1, 𝑋2) = 5 − 10/6 × 10/3 = −0.556
𝑉 𝑎𝑟(𝑋1) = 10 (1/6) (5/6) = 1.389 (𝑛𝑝𝑞)
𝑉 𝑎𝑟(𝑋2) = 10 (1/3) (2/3) = 2.222 (𝑛𝑝𝑞)
𝐶𝑜𝑟𝑟(𝑋, 𝑌 ) = −0.556√

1.389
√

2.222 = −0.316
Next class: Linear Combinations of Random Variables

LECTURE 31

9.5 Linear Combinations of Random Variables
Suppose two variables 𝑋 and 𝑌 have non-zero covariance. What can we say?
(a) 𝑋 and 𝑌 are independent. (b) 𝑋 and 𝑌 are not independent. (c) we cannot tell if they are indepen-
dent.
Same question, but for zero covariance.
Today

• Linear Combinations of random variables (9.5 & 9.6), which connects nicely to CLT
• a couple of examples

Friday
• Indicator Variables

Rules of Linear Combinations
𝑃 = 𝛼𝑋 + (1 − 𝛼)𝑌 → two stocks
𝑆 = 0.05𝐴 + 0.3𝑀 + 0.15𝑄 + 0.5𝐹
Means
1. 𝐸(𝑎𝑋 + 𝑏𝑌 ) = 𝑎𝐸(𝑋) + 𝑏𝐸(𝑌 )

2. 𝐸 (
𝑛

∑
𝑖=1

𝑎𝑖𝑋𝑖) =
𝑛

∑
𝑖=1

𝑎𝑖𝐸(𝑋𝑖) = 𝑎1𝐸(𝑋1) + 𝑎2𝐸(𝑋2) + ⋯ + 𝑎𝑛𝐸(𝑋𝑛)
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3. 𝐸 (
𝑛

∑
𝑖=1

𝑋𝑖
𝑛 ) =

𝑛
∑
𝑖=1

𝜇
𝑛 = 𝑛

𝑛 𝜇 = 𝜇

𝑋𝑖’s all have mean 𝜇

𝑋̄ = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 ⟹ 𝐸(𝑋̄) = 𝜇

Variances
1. 𝑉 𝑎𝑟(𝑎𝑋 + 𝑏𝑌 ) = 𝑎2𝑉 𝑎𝑟(𝑋) + 𝑏2𝑉 𝑎𝑟(𝑌 ) + 2𝑎𝑏𝐶𝑜𝑣(𝑋, 𝑌 )

2. 𝑉 𝑎𝑟(𝑋̄) = 𝑉 𝑎𝑟 (
𝑛

∑
𝑖=1

𝑋𝑖
𝑛 ) =

𝑛
∑
𝑖=1

( 1
𝑛 )2 𝑉 𝑎𝑟(𝑋𝑖) = 𝑛𝜎2

𝑛2 = 𝜎2
𝑛

where 𝑋𝑖’s are independent. Thus, if we have independent RV’s 𝑋1, … , 𝑋𝑛 all with 𝜇, 𝜎2, then 𝐸(𝑋̄) = 𝜇,
𝑉 𝑎𝑟(𝑋̄) = 𝜎2

𝑛

𝜎/√𝑛 → std error of the mean
Note:

𝐶𝑜𝑣(𝑋, 𝑋) = 𝐸[𝑋𝑋] − 𝐸[𝑋]𝐸[𝑋]
= 𝐸[𝑋2] − (𝐸[𝑋])2

= 𝑉 𝑎𝑟(𝑋)

⟹ 𝐶𝑜𝑟𝑟(𝑋, 𝑋) = 1
Covariances

𝐶𝑜𝑣(𝑎𝑋 + 𝑏𝑌 , 𝑐𝑍 + 𝑑𝑊) = 𝑎𝑐𝐶𝑜𝑣(𝑋, 𝑍) + 𝑎𝑑𝐶𝑜𝑣(𝑋, 𝑊) + 𝑏𝑐𝐶𝑜𝑣(𝑌 , 𝑍) + 𝑏𝑑𝐶𝑜𝑣(𝑌 , 𝑊)

9.6 Linear Combinations of Normal Random Variables
Claim: If 𝑋𝑖 ∼ 𝑁(𝜇𝑖, 𝜎2

𝑖 ) for 𝑖 = 1, 2, … , 𝑛 are random variables, then
𝑛

∑
𝑖=1

𝑎𝑖𝑋𝑖 ∼ 𝑁 (
𝑛

∑
𝑖=1

𝑎𝑖𝜇𝑖,
𝑛

∑
𝑖=1

𝑎2
𝑖 𝜎2

𝑖 )

𝑋𝑖 ∼ 𝑁(𝜇, 𝜎2) ⟹ 𝑋̄ ∼ 𝑁(𝜇, 𝜎2/𝑛)

Example
Weight of a cat 𝐶 ∼ 𝑁(4.1, 1.62), weight of a dog 𝐷 ∼ (9.4, 3.62). Find the probability that a cat weighs more
than a dog.
Solution.
𝑃(𝐶 > 𝐷) ⟹ 𝑃(𝐶 − 𝐷 > 0) → 𝐶 − 𝐷 ∼ 𝑁(4.1 − 9.4, 1.62 + (−3.6)2)

= 𝑃 (𝐶 − 𝐷 − (−5.3)√
15.52 > 0 − (−5.3)√

15.52 )

= 𝑃(𝑍 > 1.35)
= 1 − 0.91149
= 0.08851

Example
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Heights of cats are 𝑁(24, 1.52). Find probability a cat has height within 1cm of average.
Solution.

𝑃(23 < 𝑋 < 25) = 𝑃 (23 − 24
1.5 < 𝑋 − 24

1.5 < 25 − 24
1.5 )

= 𝑃(−0.67 < 𝑍 < 0.67)
= 2(0.74857) − 1
= 0.49714

Example
Find the probability the average height of 5 cats is within 1cm of average.
Solution.

𝑋̄ =
5

∑
𝑖=1

𝑋𝑖 ∼ 𝑁(24, 1.52/5)

𝑃 (∣𝑋̄ − 24∣ < 1) = 𝑃(23 < 𝑋̄ < 25)

= 𝑃 (23 − 24
1.5/√

5
< 𝑍 < 25 − 25

1.5/√
5

)

= 𝑃(−1.49 < 𝑍 < 1.49)
= 0.86378

LECTURE 32

Today
1. Quiz #3 - Nov. 29th, 7-8pm [Sec. 9.2-9.7 except 9.3 (Markov Chains)]
2. Cat exercise
3. Indicator variables

Cat Exercise
How many cats would you need to have for a 0.95 probability that the average height is within 1cm of the
true average?
Solution. Let 𝑋 be the height of the cat.

𝑋 ∼ 𝑁(24, 1.52)
(finding the middle 0.95, tails are 0.025 each; in the table we look for 0.975)
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𝑃 (∣𝑋̄ − 24∣ < 1) = 0.95

𝑃(0.975) = 1.96

𝑍 = ±1.96 ⟹ 𝑍 = 𝑋̄ − 𝜇
𝜎/√𝑛

⟹ 1.96 = 25 − 24
1.5/√𝑛

𝑛 = 8.64 = 9

9.7 Indicator Variables
A tool you can use to evaluate more complicated distributions.

9.7.1 Definition (Indicator Variable)
An indicator variable (Bernoulli variables)

𝐼𝐴 = {1, if 𝐴 occurs
0, if 𝐴 does not occur

𝐸(𝐼𝐴) = 1𝑃 (𝐴) + 0(1 − 𝑃(𝐴)) = 𝑃(𝐴)
𝐸(𝐼2

𝐴) = 12𝑃(𝐴) + 02(1 − 𝑃 (𝐴)) = 𝑃(𝐴)
𝑉 𝑎𝑟(𝐼𝐴) = 𝐸(𝐼2

𝐴) − (𝐸(𝐼𝐴))2 = 𝑃(𝐴) − (𝑃(𝐴))2 = 𝑃(𝐴)(1 − 𝑃(𝐴))

𝐼𝐵 = {1, if 𝐵 occurs
0, if 𝐵 does not occur

𝐶𝑜𝑣(𝐼𝐴, 𝐼𝐵)
𝐼𝐵\𝐼𝐴 0 1

0 0 0
1 0 1
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𝐼𝐴𝐼𝐵 =

⎧{{
⎨{{⎩

0
0
0

⎫}
⎬}⎭

otherwise

1, if 𝐴 and 𝐵 occur

𝐸(𝐴) = 𝑃(𝐴)
𝐸(𝐵) = 𝑃(𝐵)
𝐸(𝐼𝐴𝐼𝐵) = 𝑃(𝐴𝐵)

𝐶𝑜𝑣(𝐼𝐴, 𝐼𝐵) = 𝑃(𝐴𝐵) − 𝑃(𝐴)𝑃(𝐵)

REMARK 9.7.1. If 𝐴 and 𝐵 are independent, 𝐼𝐴 and 𝐼𝐵 will be uncorrelated.
1. Let 𝑋 ∼ Binomial(𝑛, 𝑝) use indicator variables to find 𝜇 and 𝜎2

Let
𝑋𝑖 = {1, if trial 𝑖 is a success

0, if trial 𝑗 is a failure
then 𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛.
𝐸(𝑋𝑖) = 𝑝

𝐸(𝑋) = 𝐸(
𝑛

∑
𝑖=1

𝑋𝑖) =
𝑛

∑
𝑖=1

𝐸(𝑋𝑖) = 𝑛𝑝 = 𝜇

𝑉 𝑎𝑟(𝑋) =
𝑛

∑
𝑖=1

𝑉 𝑎𝑟(𝑋𝑖) = 𝑛𝑝(1 − 𝑝) = 𝜎2

2. 𝑋 ∼ Hyp(𝑁, 𝑟, 𝑛); reminder: (𝑁 trials, 𝑟 S’s, 𝑛 selections) Let

𝑋𝑖 = {1, if object 𝑖 is a success (S)
0, if object 𝑗 is a failure (F)

𝐸(𝑋𝑖) = 𝑃(select object is an S) = 𝑟/𝑁 [from 𝐸(𝐼𝐴) = 𝑃(𝐴)]
𝑉 𝑎𝑟(𝑋𝑖) = 𝑟/𝑁(1 − 𝑟/𝑁) [from 𝑉 𝑎𝑟(𝐼𝐴) = 𝑃(𝐴) − (1 − 𝑃(𝐴))]

𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) = 𝑃(objects 𝑖 and 𝑗 are S’s) − ( 𝑟
𝑁 ) ( 𝑟

𝑁 )

= (𝑟
2)

(𝑁
2 ) − ( 𝑟

𝑁 )
2

= 𝑟(𝑟 − 1)
𝑁(𝑁 − 1) − 𝑟2

𝑁2

= − 𝑟(𝑁 − 𝑟)
𝑁2(𝑁 − 1) < 0

𝑋 =
𝑛

∑
𝑖=1

𝑋𝑖 ⟹ 𝐸(𝑋) =
𝑛

∑
𝑖=1

𝑟/𝑁 = 𝑛𝑟/𝑁

𝑉 𝑎𝑟(𝑋) =
𝑛

∑
𝑖=1

𝑉 𝑎𝑟(𝑋𝑖) + 2 ∑
𝑖<𝑗

𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)
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where 𝑉 𝑎𝑟(𝑋) comes from properties in 9.5, the first term has 𝑛 terms, the second term has (𝑛
2) terms.

= 𝑛𝑟
𝑁 (1 − 𝑟

𝑁 ) + 2 [𝑛(𝑛 − 1)
2 ] [− 𝑟(𝑁 − 𝑟)

𝑁2(𝑁 − 1)] = 𝑛𝑟
𝑁 (1 − 𝑟

𝑁 ) (𝑁 − 𝑛
𝑁 − 1 )

where 𝑛𝑟
𝑁 (1 − 𝑟

𝑁 ) is Binomial(𝑛, 𝑟/𝑁) and the term ( 𝑁−𝑛
𝑁−1 ) reduces variance because we are sampling without

replacement.
Example
𝑁 messages come to a server which randomly gives one message to each intended recipient. Find the mean
and variance of the # of correctly delivered messages.
Solution.
Let

𝑋𝑖 = {1, if msg 𝑖 is correct
0, otherwise

then 𝑋 =
𝑁
∑
𝑖=1

𝑋𝑖

𝐸(𝑋𝑖) = 𝑃(msg 𝑖 is correct) = 1
𝑁

𝑉 𝑎𝑟(𝑋𝑖) = 1
𝑁 (1 − 1

𝑁 )

⎫}
⎬}⎭

properties of indicator variables

𝐸(𝑋𝑖𝑋𝑗) = 𝑃(𝑖 correct)𝑃 (𝑗 correct|𝑖 correct)

= 1
𝑁

1
𝑁 − 1

= 1
𝑁(𝑁 − 1)

𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) = 1
𝑁(𝑁−1) − ( 1

𝑁 )2 = 1
𝑁2(𝑁−1) > 0

𝐸(𝑋) =
𝑁
∑
𝑖=1

𝐸(𝑋𝑖) =
𝑁
∑
𝑖=1

1
𝑁 = 𝑁 1

𝑁 = 1

𝑉 𝑎𝑟(𝑋) = 1 → for Diana
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